雙鴨山市重點中學2023年數(shù)學高一第二學期期末經(jīng)典試題含解析_第1頁
雙鴨山市重點中學2023年數(shù)學高一第二學期期末經(jīng)典試題含解析_第2頁
雙鴨山市重點中學2023年數(shù)學高一第二學期期末經(jīng)典試題含解析_第3頁
雙鴨山市重點中學2023年數(shù)學高一第二學期期末經(jīng)典試題含解析_第4頁
雙鴨山市重點中學2023年數(shù)學高一第二學期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.關于的不等式的解集中,恰有3個整數(shù),則的取值范圍是()A. B.C. D.2.已知的內(nèi)角的對邊分別為,若,則的形狀為()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰或直角三角形3.若函數(shù)有零點,則實數(shù)的取值范圍為()A. B. C. D.4.若是等差數(shù)列,首項,,,則使前n項和成立的最大正整數(shù)n=()A.2017 B.2018 C.4035 D.40345.已知在角終邊上,若,則()A. B.-2 C.2 D.6.如果存在實數(shù),使成立,那么實數(shù)的取值范圍是()A. B.或C.或 D.或7.已知點P(,)為角的終邊上一點,則()A. B.- C. D.08.執(zhí)行如圖所示的程序框圖,則輸出的()A.3 B.4 C.5 D.69.設△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若,則的形狀一定是()A.等腰直角三角形 B.直角三角形 C.等腰三角形 D.等邊三角形10.數(shù)列{an}中a1=﹣2,an+1=1,則a2019的值為()A.﹣2 B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設,滿足約束條件,則的最小值是______.12.已知數(shù)列的通項公式,那么使得其前項和大于7.999的的最小值為______.13.方程的解為_________.14.對于正項數(shù)列,定義為的“光陰”值,現(xiàn)知某數(shù)列的“光陰”值為,則數(shù)列的通項公式為_____.15.的化簡結果是_________.16.已知,,若,則______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列中,,前項的和為,且滿足數(shù)列是公差為的等差數(shù)列.(1)求數(shù)列的通項公式;(2)若恒成立,求的取值范圍.18.已知cosα=,sin(α-β)=,且α,β∈(0,).求:(1)cos(α-β)的值;(2)β的值.19.已知數(shù)列和滿足:,,,,且是以q為公比的等比數(shù)列.(1)求證:;(2)若,試判斷是否為等比數(shù)列,并說明理由.(3)求和:.20.底面半徑為3,高為的圓錐有一個內(nèi)接的正四棱柱(底面是正方形,側(cè)棱與底面垂直的四棱柱).(1)設正四棱柱的底面邊長為,試將棱柱的高表示成的函數(shù);(2)當取何值時,此正四棱柱的表面積最大,并求出最大值.21.已知向量,,,.(Ⅰ)若四邊形是平行四邊形,求,的值;(Ⅱ)若為等腰直角三角形,且為直角,求,的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

首先將原不等式轉(zhuǎn)化為,然后對進行分類討論,再結合不等式解集中恰有3個整數(shù),列出關于的條件,求解即可.【詳解】關于的不等式等價于當時,即時,于的不等式的解集為,要使解集中恰有3個整數(shù),則;當時,即時,于的不等式的解集為,不滿足題意;當時,即時,于的不等式的解集為,要使解集中恰有3個整數(shù),則;綜上,.故選:C.【點睛】本題主要考了一元二次不等式的解法以及分類討論思想,屬于中檔題.2、A【解析】中,,所以.由正弦定理得:.所以.所以,即因為為的內(nèi)角,所以所以為等腰三角形.故選A.3、D【解析】

令,得,再令,得出,并構造函數(shù),將問題轉(zhuǎn)化為直線與函數(shù)在區(qū)間有交點,利用數(shù)形結合思想可得出實數(shù)的取值范圍.【詳解】令,得,,令,則,所以,,構造函數(shù),其中,由于,,,所以,當時,直線與函數(shù)在區(qū)間有交點,因此,實數(shù)的取值范圍是,故選D.【點睛】本題考查函數(shù)的零點問題,在求解含參函數(shù)零點的問題時,若函數(shù)中只含有單一參數(shù),可以采用參變量分離法轉(zhuǎn)化為參數(shù)直線與定函數(shù)圖象的交點個數(shù)問題,難點在于利用換元法將函數(shù)解析式化簡,考查數(shù)形結合思想,屬于中等題.4、D【解析】

由等差數(shù)列的性質(zhì)可得,,由等差數(shù)列前項和公式可得則,,得解.【詳解】解:由是等差數(shù)列,又,所以,又首項,,則,,則,,即使前n項和成立的最大正整數(shù),故選:D.【點睛】本題考查了等差數(shù)列的性質(zhì),重點考查了等差數(shù)列前項和公式,屬中檔題.5、C【解析】

由正弦函數(shù)的定義求解.【詳解】,顯然,∴.故選C.【點睛】本題考查正弦函數(shù)的定義,屬于基礎題.解題時注意的符號.6、A【解析】

根據(jù),可得,再根據(jù)基本不等式取等的條件可得答案.【詳解】因為,所以,即,即,又(當且僅當時等號成立)所以,所以.故選:A【點睛】本題考查了余弦函數(shù)的值域,考查了基本不等式取等的條件,屬于中檔題.7、A【解析】

根據(jù)余弦函數(shù)的定義,可直接得出結果.【詳解】因為點P(,)為角的終邊上一點,則.故選A【點睛】本題主要考查三角函數(shù)的定義,熟記概念即可,屬于基礎題型.8、C【解析】

由已知中的程序語句可知:該程序的功能是利用循環(huán)結構計算S的值并輸出相應變量n的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.【詳解】解:模擬程序的運行,可得

S=0,n=1

S=2,n=2

滿足條件S<30,執(zhí)行循環(huán)體,S=2+4=6,n=3

滿足條件S<30,執(zhí)行循環(huán)體,S=6+8=14,n=4

滿足條件S<30,執(zhí)行循環(huán)體,S=14+16=30,n=1

此時,不滿足條件S<30,退出循環(huán),輸出n的值為1.

故選C.【點睛】本題考查了程序框圖的應用問題,解題時應模擬程序框圖的運行過程,以便得出正確的結論,是基礎題.9、C【解析】

將角C用角A角B表示出來,和差公式化簡得到答案.【詳解】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,角A,B,C為△ABC的內(nèi)角故答案選C【點睛】本題考查了三角函數(shù)和差公式,意在考查學生的計算能力.10、B【解析】

根據(jù)遞推公式,算出即可觀察出數(shù)列的周期為3,根據(jù)周期即可得結果.【詳解】解:由已知得,,,

,…,,

所以數(shù)列是以3為周期的周期數(shù)列,故,

故選:B.【點睛】本題考查遞推數(shù)列的直接應用,難度較易.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】

根據(jù)不等式組,畫出可行域,數(shù)形結合求解即可.【詳解】由題可知,可行域如下圖所示:容易知:,可得:,結合圖像可知,的最小值在處取得,則.故答案為:1.【點睛】本題考查線性規(guī)劃的基礎問題,只需作出可行域,數(shù)形結合即可求解.12、1【解析】

直接利用數(shù)列的通項公式,建立不等式,解不等式求出結果.【詳解】解:數(shù)列的通項公式,則:,所以:當時,即:,當時,成立,即:的最小值為1.故答案為:1【點睛】本題考查的知識要點:數(shù)列的通項公式的求法及應用,主要考查學生的運算能力和轉(zhuǎn)化能力,屬于基礎題型.13、【解析】

根據(jù)特殊角的三角函數(shù)及正切函數(shù)的周期為kπ,即可得到原方程的解.【詳解】則故答案為:【點睛】此題考查學生掌握正切函數(shù)的圖象及周期性,是一道基礎題.14、【解析】

根據(jù)的定義把帶入即可?!驹斀狻俊摺唷摺啖佟啖冖?②得∴故答案為:【點睛】本題主要考查了新定義題,解新定義題首先需要讀懂新定義,其次再根據(jù)題目的條件帶入新定義即可,屬于中等題。15、【解析】原式,因為,所以,且,所以原式.16、【解析】

根據(jù)向量垂直的坐標表示列出等式,求出,再利用二倍角公式、平方關系即可求出.【詳解】由得,,解得,.【點睛】本題主要考查了向量垂直的坐標表示以及二倍角公式、平方關系的應用.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)根據(jù)題意求出數(shù)列的通項公式,可解出,從而得出數(shù)列的通項公式;(2)將數(shù)列的通項公式裂項,利用裂項法求出,由得出,然后利用定義法判斷出數(shù)列的單調(diào)性,求出數(shù)列的最小項,從而得出實數(shù)的取值范圍.【詳解】(1)因為,所以,又因為數(shù)列是公差為的等差數(shù)列,所以,即;(2)因為,所以.于是,即為,整理可得.設,則.令,解得,,所以,,故數(shù)列的最大項的值為,故,因此,實數(shù)的取值范圍是.【點睛】本題考查數(shù)列通項公式的求解,同時也考查了裂項求和法以及數(shù)列不等式恒成立求參數(shù),解題時利用參變量分離法轉(zhuǎn)化為新數(shù)列的最值問題求解,同時也考查利用定義法判斷數(shù)列的單調(diào)性,考查分析問題和解決問題的能力,屬于中等題.18、(1)【解析】

(1)利用同角的平方關系求cos(α-β)的值;(2)利用求出,再求的值.【詳解】(1)因為,所以cos(α-β).(2)因為cosα=,所以,所以,因為β∈(0,),所以.【點睛】本題主要考查同角的三角函數(shù)的關系求值,考查差角的余弦,意在考查學生對這些知識的理解掌握水平,屬于基礎題.19、(1)證明見解析(2)是等比數(shù)列,詳見解析(3)答案不唯一,具體見解析【解析】

(1)由即可證明;(2)證明即可(3)由(1)可知,是以為公比的等比數(shù)列,也是以為公比的等比數(shù)列,討論和分組求和即可【詳解】(1)因為,且是以q為公比的等比數(shù)列,所以,則,所以.(2)是等比數(shù)列因為;所以,又所以是以5為首項,為公比的等比數(shù)列.(3)由(1)可知,是以為公比的等比數(shù)列,也是以為公比的等比數(shù)列,所以當時,,當時.【點睛】本題考查等比數(shù)列的證明,分組求和,考查推理計算及分類討論思想,是中檔題20、(1);(2)正四棱柱的底面邊長為時,正四棱柱的表面積最大值為48.【解析】試題分析:(1)根據(jù)比例關系式求出關于的解析式即可;(2)設該正四棱柱的表面積為,得到關系式,根據(jù)二次函數(shù)的性質(zhì)求出的最大值即可.試題解析:(1)根據(jù)相似性可得:,解得:;(2)設該正四棱柱的表面積為.則有關系式,因為,所以當時,,故當正四棱柱的底面邊長為時,正四棱柱的表面積最大值為.點睛:本題考查了數(shù)形結合思想,考查二次函數(shù)的性質(zhì)以及求函數(shù)的最值問題,是一道中檔題;該題中的難點在于必須注意圓錐軸截面圖時,三角形內(nèi)的矩形的寬為正四棱柱的底面對角

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論