高等數(shù)學(xué)練習(xí)冊(cè)(上)_第1頁(yè)
高等數(shù)學(xué)練習(xí)冊(cè)(上)_第2頁(yè)
高等數(shù)學(xué)練習(xí)冊(cè)(上)_第3頁(yè)
高等數(shù)學(xué)練習(xí)冊(cè)(上)_第4頁(yè)
高等數(shù)學(xué)練習(xí)冊(cè)(上)_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

本文格式為Word版,下載可任意編輯——高等數(shù)學(xué)練習(xí)冊(cè)(上)

學(xué)號(hào):姓名:

第一章函數(shù)與極限

§2數(shù)列的極限

1.判斷說(shuō)明題

(1)limun?A?在A的任意?鄰域內(nèi)都有無(wú)窮多個(gè){un}中的項(xiàng)

n??

(2)無(wú)界數(shù)列一定發(fā)散,有界數(shù)列不一定收斂

2.觀測(cè)數(shù)列{sinn1n2?}的極限,并用定義證明.

3.觀測(cè)數(shù)列的極限(1)xn?nsin

?2n?1??2n(2)xn??n?2?1n??2n為奇數(shù)n為偶數(shù)n?2

學(xué)號(hào):姓名:

4.證明:若數(shù)列{xn}滿足,x2k?1?a(k??),x2k?a(k??),則xn?a(n??)

5.若limun?a,證明:limun?a,并舉例說(shuō)明反過(guò)來(lái)未必成立。

n??n??

6.利用極限的分析定義證明lim3n?12n?1n???32

§3函數(shù)的極限

1.試求以下函數(shù)在x?0點(diǎn)的左、右極限,以及x?0點(diǎn)的極限(1)y?[x](2)y?

(2)y?

xx2xx2

學(xué)號(hào):姓名:

(3)

?2x2?1,x?0?x??f(x)??0,x?0

?x2?e,x?0???

2.試觀測(cè)極限limcosxx,并利用定義證明.

x??

3.求以下極限

(1)limarctanx

x???

(2)limarctant?0?1t

(3)lime

x???x

1e1?x(4)lim?t?1

學(xué)號(hào):姓名:

?1?4.利用極限的分析定義證明:lim???0

x????2?x

5.證明:lim

|x|x不存在。

x?0§4無(wú)窮小與無(wú)窮大

1.判斷說(shuō)明題(1)

(2)無(wú)窮小量的商不一定是無(wú)窮小,但無(wú)窮小量的和一定是無(wú)窮小

(3)x?x0時(shí),若f(x)g(x)是無(wú)窮小,則x?x0時(shí)f,g必有一為無(wú)窮小

(4)x???,xsinx21x是無(wú)窮小量,x是無(wú)窮大量

是無(wú)界變量,但不是無(wú)窮大量

學(xué)號(hào):姓名:

2.試求以下極限(1)lim1xx??cosx

(2)limxcosxx??

(3)lim1arctanx(4)limxarctanx

x??x

(5)lim(sinx???x?1?sinx)

三試求x在何種變化過(guò)程下,以下函數(shù)是無(wú)窮小與無(wú)窮大1(1)ex(2)ln(

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論