版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,四邊形ABCD中,AB=CD,AD∥BC,以點B為圓心,BA為半徑的圓弧與BC交于點E,四邊形AECD是平行四邊形,AB=3,則的弧長為()A. B.π C. D.32.4的平方根是()A.16 B.2 C.±2 D.±3.一次函數(shù)的圖象上有點和點,且,下列敘述正確的是A.若該函數(shù)圖象交y軸于正半軸,則B.該函數(shù)圖象必經(jīng)過點C.無論m為何值,該函數(shù)圖象一定過第四象限D.該函數(shù)圖象向上平移一個單位后,會與x軸正半軸有交點4.下列每組數(shù)分別是三根小木棒的長度,用它們能擺成三角形的是()A.3cm,4cm,8cmB.8cm,7cm,15cmC.13cm,12cm,20cmD.5cm,5cm,11cm5.今年“五一”節(jié),小明外出爬山,他從山腳爬到山頂?shù)倪^程中,中途休息了一段時間.設他從山腳出發(fā)后所用的時間為t(分鐘),所走的路程為s(米),s與t之間的函數(shù)關系如圖所示,下列說法錯誤的是()A.小明中途休息用了20分鐘B.小明休息前爬山的平均速度為每分鐘70米C.小明在上述過程中所走的路程為6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度6.體育測試中,小進和小俊進行800米跑測試,小進的速度是小俊的1.25倍,小進比小俊少用了40秒,設小俊的速度是米/秒,則所列方程正確的是()A. B.C. D.7.二次函數(shù)y=﹣(x﹣1)2+5,當m≤x≤n且mn<0時,y的最小值為2m,最大值為2n,則m+n的值為()A. B.2 C. D.8.下列敘述,錯誤的是()A.對角線互相垂直且相等的平行四邊形是正方形B.對角線互相垂直平分的四邊形是菱形C.對角線互相平分的四邊形是平行四邊形D.對角線相等的四邊形是矩形9.如圖,下列四個圖形是由已知的四個立體圖形展開得到的,則對應的標號是A. B. C. D.10.如圖,在平面直角坐標系中,⊙P的圓心坐標是(3,a)(a>3),半徑為3,函數(shù)y=x的圖象被⊙P截得的弦AB的長為4,則a的值是()A.4 B.3+ C.3 D.二、填空題(共7小題,每小題3分,滿分21分)11.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,點D是以點A為圓心4為半徑的圓上一點,連接BD,點M為BD中點,線段CM長度的最大值為_____.12.如圖,直線y=k1x+b與雙曲線交于A、B兩點,其橫坐標分別為1和5,則不等式k1x<+b的解集是▲.13.新定義[a,b]為一次函數(shù)(其中a≠0,且a,b為實數(shù))的“關聯(lián)數(shù)”,若“關聯(lián)數(shù)”[3,m+2]所對應的一次函數(shù)是正比例函數(shù),則關于x的方程1x-1+114.某花店有單位為10元、18元、25元三種價格的花卉,如圖是該花店某月三種花卉銷售量情況的扇形統(tǒng)計圖,根據(jù)該統(tǒng)計圖可算得該花店銷售花卉的平均單價為_____元.15.某種藥品原來售價100元,連續(xù)兩次降價后售價為81元,若每次下降的百分率相同,則這個百分率是.16.實數(shù),﹣3,,,0中的無理數(shù)是_____.17.已知圓錐的底面圓半徑為3cm,高為4cm,則圓錐的側面積是________cm2.三、解答題(共7小題,滿分69分)18.(10分)計算:﹣12+﹣(3.14﹣π)0﹣|1﹣|.19.(5分)如圖,AB是⊙O的直徑,BC交⊙O于點D,E是弧的中點,AE與BC交于點F,∠C=2∠EAB.求證:AC是⊙O的切線;已知CD=4,CA=6,求AF的長.20.(8分)如圖,在三個小桶中裝有數(shù)量相同的小球(每個小桶中至少有三個小球),第一次變化:從左邊小桶中拿出兩個小球放入中間小桶中;第二次變化:從右邊小桶中拿出一個小球放入中間小桶中;第三次變化:從中間小桶中拿出一些小球放入右邊小桶中,使右邊小桶中小球個數(shù)是最初的兩倍.(1)若每個小桶中原有3個小球,則第一次變化后,中間小桶中小球個數(shù)是左邊小桶中小球個數(shù)的____倍;(2)若每個小桶中原有a個小球,則第二次變化后中間小桶中有_____個小球(用a表示);(3)求第三次變化后中間小桶中有多少個小球?21.(10分)在△ABC中,AB=AC≠BC,點D和點A在直線BC的同側,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,連接AD,求∠ADB的度數(shù).(不必解答)小聰先從特殊問題開始研究,當α=90°,β=30°時,利用軸對稱知識,以AB為對稱軸構造△ABD的軸對稱圖形△ABD′,連接CD′(如圖1),然后利用α=90°,β=30°以及等邊三角形等相關知識便可解決這個問題.請結合小聰研究問題的過程和思路,在這種特殊情況下填空:△D′BC的形狀是三角形;∠ADB的度數(shù)為.在原問題中,當∠DBC<∠ABC(如圖1)時,請計算∠ADB的度數(shù);在原問題中,過點A作直線AE⊥BD,交直線BD于E,其他條件不變若BC=7,AD=1.請直接寫出線段BE的長為.22.(10分)某商場柜臺銷售每臺進價分別為160元、120元的、兩種型號的電器,下表是近兩周的銷售情況:銷售時段銷售數(shù)量銷售收入種型號種型號第一周3臺4臺1200元第二周5臺6臺1900元(進價、售價均保持不變,利潤=銷售收入—進貨成本)(1)求、兩種型號的電器的銷售單價;(2)若商場準備用不多于7500元的金額再采購這兩種型號的電器共50臺,求種型號的電器最多能采購多少臺?(3)在(2)中商場用不多于7500元采購這兩種型號的電器共50臺的條件下,商場銷售完這50臺電器能否實現(xiàn)利潤超過1850元的目標?若能,請給出相應的采購方案;若不能,請說明理由.23.(12分)如圖,△DEF是由△ABC通過一次旋轉得到的,請用直尺和圓規(guī)畫出旋轉中心.24.(14分)許昌文峰塔又稱文明寺塔,為全國重點文物保護單位,某校初三數(shù)學興趣小組的同學想要利用學過的知識測量文峰塔的高度,他們找來了測角儀和卷尺,在點A處測得塔頂C的仰角為30°,向塔的方向移動60米后到達點B,再次測得塔頂C的仰角為60°,試通過計算求出文峰塔的高度CD.(結果保留兩位小數(shù))
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】∵四邊形AECD是平行四邊形,
∴AE=CD,
∵AB=BE=CD=3,
∴AB=BE=AE,
∴△ABE是等邊三角形,
∴∠B=60°,∴的弧長=.故選B.2、C【解析】試題解析:∵(±2)2=4,∴4的平方根是±2,故選C.考點:平方根.3、B【解析】
利用一次函數(shù)的性質逐一進行判斷后即可得到正確的結論.【詳解】解:一次函數(shù)的圖象與y軸的交點在y軸的正半軸上,則,,若,則,故A錯誤;
把代入得,,則該函數(shù)圖象必經(jīng)過點,故B正確;
當時,,,函數(shù)圖象過一二三象限,不過第四象限,故C錯誤;
函數(shù)圖象向上平移一個單位后,函數(shù)變?yōu)?,所以當時,,故函數(shù)圖象向上平移一個單位后,會與x軸負半軸有交點,故D錯誤,
故選B.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征、一次函數(shù)圖象與幾何變換,解題的關鍵是熟練掌握一次函數(shù)的性質,靈活應用這些知識解決問題,屬于中考??碱}型.4、C【解析】
根據(jù)三角形的三邊關系“任意兩邊之和大于第三邊,任意兩邊之差小于第三邊”,進行分析.【詳解】A、3+4<8,不能組成三角形;B、8+7=15,不能組成三角形;C、13+12>20,能夠組成三角形;D、5+5<11,不能組成三角形.故選:C.【點睛】本題考查了三角形的三邊關系,關鍵是靈活運用三角形三邊關系.5、C【解析】
根據(jù)圖像,結合行程問題的數(shù)量關系逐項分析可得出答案.【詳解】從圖象來看,小明在第40分鐘時開始休息,第60分鐘時結束休息,故休息用了20分鐘,A正確;小明休息前爬山的平均速度為:(米/分),B正確;小明在上述過程中所走的路程為3800米,C錯誤;小明休息前爬山的平均速度為:70米/分,大于休息后爬山的平均速度:米/分,D正確.故選C.考點:函數(shù)的圖象、行程問題.6、C【解析】
先分別表示出小進和小俊跑800米的時間,再根據(jù)小進比小俊少用了40秒列出方程即可.【詳解】小進跑800米用的時間為秒,小俊跑800米用的時間為秒,∵小進比小俊少用了40秒,方程是,故選C.【點睛】本題考查了列分式方程解應用題,能找出題目中的相等關系式是解此題的關鍵.7、D【解析】
由m≤x≤n和mn<0知m<0,n>0,據(jù)此得最小值為1m為負數(shù),最大值為1n為正數(shù).將最大值為1n分兩種情況,①頂點縱坐標取到最大值,結合圖象最小值只能由x=m時求出.②頂點縱坐標取不到最大值,結合圖象最大值只能由x=n求出,最小值只能由x=m求出.【詳解】解:二次函數(shù)y=﹣(x﹣1)1+5的大致圖象如下:.①當m≤0≤x≤n<1時,當x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當x=n時y取最大值,即1n=﹣(n﹣1)1+5,解得:n=1或n=﹣1(均不合題意,舍去);②當m≤0≤x≤1≤n時,當x=m時y取最小值,即1m=﹣(m﹣1)1+5,解得:m=﹣1.當x=1時y取最大值,即1n=﹣(1﹣1)1+5,解得:n=,或x=n時y取最小值,x=1時y取最大值,
1m=-(n-1)1+5,n=,∴m=,
∵m<0,
∴此種情形不合題意,所以m+n=﹣1+=.8、D【解析】【分析】根據(jù)正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定定理對選項逐一進行分析,即可判斷出答案.【詳解】A.對角線互相垂直且相等的平行四邊形是正方形,正確,不符合題意;B.對角線互相垂直平分的四邊形是菱形,正確,不符合題意;C.對角線互相平分的四邊形是平行四邊形,正確,不符合題意;D.對角線相等的平行四邊形是矩形,故D選項錯誤,符合題意,故選D.【點睛】本題考查了正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定等,熟練掌握相關判定定理是解答此類問題的關鍵.9、B【解析】
根據(jù)常見幾何體的展開圖即可得.【詳解】由展開圖可知第一個圖形是②正方體的展開圖,第2個圖形是①圓柱體的展開圖,第3個圖形是③三棱柱的展開圖,第4個圖形是④四棱錐的展開圖,故選B【點睛】本題考查的是幾何體,熟練掌握幾何體的展開面是解題的關鍵.10、B【解析】試題解析:作PC⊥x軸于C,交AB于D,作PE⊥AB于E,連結PB,如圖,∵⊙P的圓心坐標是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D點坐標為(3,3),∴CD=3,∴△OCD為等腰直角三角形,∴△PED也為等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故選B.考點:1.垂徑定理;2.一次函數(shù)圖象上點的坐標特征;3.勾股定理.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】
作AB的中點E,連接EM、CE,根據(jù)直角三角形斜邊上的中線等于斜邊的一半以及三角形的中位線定理求得CE和EM的長,然后在△CEM中根據(jù)三邊關系即可求解.【詳解】作AB的中點E,連接EM、CE,在直角△ABC中,AB===10,∵E是直角△ABC斜邊AB上的中點,∴CE=AB=5,∵M是BD的中點,E是AB的中點,∴ME=AD=2,∴在△CEM中,5-2≤CM≤5+2,即3≤CM≤1,∴最大值為1,故答案為1.【點睛】本題考查了點與圓的位置關系、三角形的中位線定理的知識,要結合勾股定理、直角三角形斜邊上的中線等于斜邊的一半解答.12、-2<x<-1或x>1.【解析】不等式的圖象解法,平移的性質,反比例函數(shù)與一次函數(shù)的交點問題,對稱的性質.不等式k1x<+b的解集即k1x-b<的解集,根據(jù)不等式與直線和雙曲線解析式的關系,可以理解為直線y=k1x-b在雙曲線下方的自變量x的取值范圍即可.而直線y=k1x-b的圖象可以由y=k1x+b向下平移2b個單位得到,如圖所示.根據(jù)函數(shù)圖象的對稱性可得:直線y=k1x-b和y=k1x+b與雙曲線的交點坐標關于原點對稱.由關于原點對稱的坐標點性質,直線y=k1x-b圖象與雙曲線圖象交點A′、B′的橫坐標為A、B兩點橫坐標的相反數(shù),即為-1,-2.∴由圖知,當-2<x<-1或x>1時,直線y=k1x-b圖象在雙曲線圖象下方.∴不等式k1x<+b的解集是-2<x<-1或x>1.13、53【解析】試題分析:根據(jù)“關聯(lián)數(shù)”[3,m+2]所對應的一次函數(shù)是正比例函數(shù),得到y(tǒng)=3x+m+2為正比例函數(shù),即m+2=0,解得:m=-2,則分式方程為1x-1去分母得:2-(x-1)=2(x-1),去括號得:2-x+1=2x-2,解得:x=53經(jīng)檢驗x=53考點:1.一次函數(shù)的定義;2.解分式方程;3.正比例函數(shù)的定義.14、17【解析】
根據(jù)餅狀圖求出25元所占比重為20%,再根據(jù)加權平均數(shù)求法即可解題.【詳解】解:1-30%-50%=20%,∴.【點睛】本題考查了加權平均數(shù)的計算方法,屬于簡單題,計算25元所占權比是解題關鍵.15、10%.【解析】
設平均每次降價的百分率為,那么第一次降價后的售價是原來的,那么第二次降價后的售價是原來的,根據(jù)題意列方程解答即可.【詳解】設平均每次降價的百分率為,根據(jù)題意列方程得,,解得,(不符合題意,舍去),答:這個百分率是.故答案為.【點睛】本題考查一元二次方程的應用,要掌握求平均變化率的方法.若設變化前的量為,變化后的量為,平均變化率為,則經(jīng)過兩次變化后的數(shù)量關系為.16、【解析】
無理數(shù)包括三方面的數(shù):①含π的,②一些開方開不盡的根式,③一些有規(guī)律的數(shù),根據(jù)以上內容判斷即可.【詳解】解:=4,是有理數(shù),﹣3、、0都是有理數(shù),是無理數(shù).故答案為:.【點睛】本題考查了對無理數(shù)的定義的理解和運用,注意:無理數(shù)是指無限不循環(huán)小數(shù),包括三方面的數(shù):①含π的,②一些開方開不盡的根式,③一些有規(guī)律的數(shù).17、15π【解析】【分析】設圓錐母線長為l,根據(jù)勾股定理求出母線長,再根據(jù)圓錐側面積公式即可得出答案.【詳解】設圓錐母線長為l,∵r=3,h=4,∴母線l=,∴S側=×2πr×5=×2π×3×5=15π,故答案為15π.【點睛】本題考查了圓錐的側面積,熟知圓錐的母線長、底面半徑、圓錐的高以及圓錐的側面積公式是解題的關鍵.三、解答題(共7小題,滿分69分)18、1.【解析】
直接利用絕對值的性質以及零指數(shù)冪的性質和負指數(shù)冪的性質分別化簡得出答案.【詳解】解:原式=﹣1++4﹣1﹣(﹣1)=﹣1++4﹣1﹣+1=1.【點睛】本題考查了實數(shù)的運算,零指數(shù)冪,負整數(shù)指數(shù)冪,解題的關鍵是掌握冪的運算法則.19、(1)證明見解析(2)2【解析】
(1)連結AD,如圖,根據(jù)圓周角定理,由E是的中點得到由于則,再利用圓周角定理得到則所以于是根據(jù)切線的判定定理得到AC是⊙O的切線;先求出的長,用勾股定理即可求出.【詳解】解:(1)證明:連結AD,如圖,∵E是的中點,∴∵∴∵AB是⊙O的直徑,∴∴∴即∴AC是⊙O的切線;(2)∵∴∵,∴【點睛】本題考查切線的判定與性質,圓周角定理,屬于圓的綜合題,注意切線的證明方法,是高頻考點.20、(1)5;(2)(a+3);(3)第三次變化后中間小桶中有2個小球.【解析】
(1)(2)根據(jù)材料中的變化方法解答;(3)設原來每個捅中各有a個小球,根據(jù)第三次變化方法列出方程并解答.【詳解】解:(1)依題意得:(3+2)÷(3﹣2)=5故答案是:5;(2)依題意得:a+2+1=a+3;故答案是:(a+3)(3)設原來每個捅中各有a個小球,第三次從中間桶拿出x個球,依題意得:a﹣1+x=2ax=a+1所以a+3﹣x=a+3﹣(a+1)=2答:第三次變化后中間小桶中有2個小球.【點睛】考查了一元一次方程的應用和列代數(shù)式,解題的關鍵是找到描述語,列出等量關系,得到方程并解答.21、(1)①△D′BC是等邊三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣【解析】
(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等邊三角形;②借助①的結論,再判斷出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解決問題.(1)當60°<α≤110°時,如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類似(1).(3)第①種情況:當60°<α≤110°時,如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類似(1),最后利用含30度角的直角三角形求出DE,即可得出結論;第②種情況:當0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.證明方法類似(1),最后利用含30度角的直角三角形的性質即可得出結論.【詳解】(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等邊三角形,②∵△D′BC是等邊三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如圖3中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(3)第①情況:當60°<α<110°時,如圖3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴DE=,∵△BCD'是等邊三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情況:當0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.同理可得:∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可證△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=1,∴DE=,∴BE=BD+DE=7+,故答案為:7+或7﹣.【點睛】此題是三角形綜合題,主要考查全等三角形的判定和性質.等邊三角形的性質、等腰三角形的性質等知識
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版股權代持法律風險防范專項協(xié)議2篇
- POS機終端設備銷售合同
- 2025年度海洋工程技術研究與合作合同3篇
- 2024面包磚專項訂購協(xié)議細則版B版
- 物聯(lián)網(wǎng)技術推動城市發(fā)展協(xié)議
- 2024金融科技研發(fā)與許可合同
- 二零二五年度國際貿易進出口合同履行與環(huán)保要求2篇
- 素描結構課程設計
- 公產房買賣合同
- 2024版設備租賃合同(附維修條款)
- PPT中國地圖素材(可修改顏色)
- 2023年深國交入學考試英語模擬試題
- 2022年中國農業(yè)銀行(廣東分行)校園招聘筆試試題及答案解析
- 品牌管理第五章品牌體驗課件
- 基于CAN通訊的儲能變流器并機方案及應用分析報告-培訓課件
- 保姆級別CDH安裝運維手冊
- 菌草技術及產業(yè)化應用課件
- GB∕T 14527-2021 復合阻尼隔振器和復合阻尼器
- 隧道二襯、仰拱施工方案
- 顫病(帕金森?。┲嗅t(yī)護理常規(guī)
- 果膠項目商業(yè)計劃書(模板范本)
評論
0/150
提交評論