![雙曲拋物面薄殼屋蓋的制作造型設計_第1頁](http://file4.renrendoc.com/view/9f1ab562cea3ad8166ee1a952cc8c8f1/9f1ab562cea3ad8166ee1a952cc8c8f11.gif)
![雙曲拋物面薄殼屋蓋的制作造型設計_第2頁](http://file4.renrendoc.com/view/9f1ab562cea3ad8166ee1a952cc8c8f1/9f1ab562cea3ad8166ee1a952cc8c8f12.gif)
![雙曲拋物面薄殼屋蓋的制作造型設計_第3頁](http://file4.renrendoc.com/view/9f1ab562cea3ad8166ee1a952cc8c8f1/9f1ab562cea3ad8166ee1a952cc8c8f13.gif)
![雙曲拋物面薄殼屋蓋的制作造型設計_第4頁](http://file4.renrendoc.com/view/9f1ab562cea3ad8166ee1a952cc8c8f1/9f1ab562cea3ad8166ee1a952cc8c8f14.gif)
![雙曲拋物面薄殼屋蓋的制作造型設計_第5頁](http://file4.renrendoc.com/view/9f1ab562cea3ad8166ee1a952cc8c8f1/9f1ab562cea3ad8166ee1a952cc8c8f15.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
本文格式為Word版,下載可任意編輯——雙曲拋物面薄殼屋蓋的制作造型設計《數(shù)學模型與試驗》課程論文
姓名論文題目學號學院、專業(yè)最便捷聯(lián)系電話EmailQQ論文分數(shù)
教師填寫:雙曲拋物面薄殼屋蓋的制作、造型設計數(shù)計學院數(shù)學與應用數(shù)學
雙曲拋物面薄殼屋蓋的制作、造型設計
摘要
隨著社會經(jīng)濟的高速發(fā)展人們的生活水平不斷地提高,人們的住房也是越來越好,住房的薄殼屋蓋的制作、造型設計在隨著科技的發(fā)展而在不斷地改進,由原來的磚瓦改變?yōu)殡p曲拋物面,鋼筋混凝土雙曲拋物面(馬鞍面)薄殼作為屋蓋,具有利于排水、防止?jié)B漏、減輕自重、儉約材料、受力性能較好、剛度較大、造型幽美等優(yōu)點,在廠房、商場、影劇院等民用建筑廣泛應用,本文就是研究雙曲拋物面薄殼屋蓋的特點,通過模型假設預應力鋼筋理想化為一維的直線.利用雙曲拋物面是直紋面的特點來了解雙曲拋物面薄殼屋蓋的各個特點以及假設圓柱形預應力鋼筋的模型來了解雙曲拋物面薄殼屋蓋的特點,從而研究雙曲拋物面薄殼屋蓋進一步來了解雙曲拋物面得的一些特點,從而擴展我們的幾何知識。通過上述模型來展示其是一種實用、美觀的屋蓋造型。
??ij???11n3?n1?n2??ABuuAB
?112un3?(,,)BAABU族直母線的方向向量:
?k1?1?2u?0?i?j?kBAAB?1
2.求V族直母線的方向向量:
?1:?xy11??v?0n1?(,,0)ABAB,其法相量為:?vvv?y?z?0n2?(,,?1)ABAB,其法相量為:
?2:??ij???11n3?n1?n2?ABvv?AB
?112vn3?(?,,?)BAABV族直母線的方向向量:
?k1?1?2v?0??i?j?kBAAB?1
由所求的兩族直母線的方向向量可知在x?y平面上,同族的直母線的投影是相互平行的。我們選取其中的一族作為研究的對象,在這里我們選取U族進行研究。
在x?y平面上的投影直母線的方向向量為:
?112un3?(,,)BAAB
則在x?y平面上的投影的斜率為:
1Bk?A?1AB
由斜率我們可以為建立方程投影的方程為:
y?Bx?n1A
圖(1)圖(2)
由圖(1)可知并非同一族的直母線都可以安置預應力鋼筋的。只有能在兩端固定的直母線才可以,又由圖(2)可知過矩形頂點的直母線的投影的方程所過的點為(a,b)。求出該邊上的直線后,求出其在x軸上的截距,用該截距除以之間的間距?x,便可算出原點一邊的所用的預應力鋼筋的數(shù)目,而將一邊的鋼筋數(shù)目乘2加1,便是一個族所具有的預應力鋼筋的數(shù)目,由圖形的對稱性可知,所有的鋼筋數(shù)目為一個族的兩倍。取點(a,b)得:
Bn1?b?aA
則直線方程為:
BBy?x?(b?a)AA當y?0時,在x軸上的截距為:
a?AbB
已知每一條母線之間的間隔為?x:
Ab??a???Bm????x????則一共可安放過點
(k?x,fx(k?x2))a的直母線鋼筋數(shù)為:
Ab??a???Bn?4???2?x????
1.2當圓柱形預應力鋼筋不能簡化為直線。
?x?z?fx???a?鄰近的哪些點處.寫出這些中a.圓柱形預應力鋼筋的中心軸線應當安置在心軸線的方程。
2?x?xz?fx??(k?x,0,fx()2)?a?,則其坐標為a假設圓柱形預應力是直線的話,則中心軸線經(jīng)過由于預應力鋼筋的半徑無法忽略,所以其中心軸便相當于經(jīng)過平移后形成一條新的拋物線上的點,平移后其方向向量沒有改變。假設平移后的坐標為(p,0,q),原有坐標與現(xiàn)有坐標的關(guān)系為:
2fxk?x?p?k?x???12?k?x2a)?q?fx(a??k?x22?(p?k?x)2?(q?fx())a?2設平移后U族,V族的直母線經(jīng)過的坐標為:(p,0,q)兩個族的方向向量:
112u112v(,,)(?,,?)BAABBAABU族的方向向量:V族的方向向量:
由于中心軸方程經(jīng)過點(p,0,q),根據(jù)直線的標準方程可知:U族的中心軸方程為:
x?pyz?p??112uAABBV族的中心軸方程為:
x?pyz?q??112v??AABBb.寫出這些中心軸線和錨固面的交點的表示式.
要求出中心軸線和錨固面的交點只需要將兩個方程聯(lián)馬上可。U族中心軸與錨固面的交點的表示式:
?x?pyz?q?1?1?2u?AAB?B?111?A?x?y?(?b?l)?(?b?l)?0?112??AA?B??B
V族中心軸與錨固面的交點的表示式:
z?q?x?py???112v???AAB?B?111?A?x?y?(?b?l)?(?b?l)?0?112??AA?B??B
c.要求這些圓柱形預應力鋼筋不能相交。它們的中心軸線在x-y平面上的垂直投影是可以相交的,計算沿這些交點垂直方向的兩根圓柱形預應力鋼筋之間的距離,要盡可能小(最好為零)。
要求兩根圓柱形預應力鋼筋之間的距離,便是要求空間中兩根直線之間的距離,根據(jù)解析幾何中計算兩直線的距離的公式,我們可以求出兩根圓形預應力鋼筋之間的距離,但是還要減去兩圓柱形預應力鋼筋的半徑r。
設U族經(jīng)過的點為:?p1,0,q1?,V族經(jīng)過的點為?p2,0,q2?
112v112u(?,,?)(,,)BAABBAABU族方向向量,V族方向向量
根據(jù)公式得:
d?p1?p21B1?B20q1?q212uAAB12v?AAB11B?B11??BB2
兩個半圓柱形預應力鋼筋之間的距離為:s12u2uAAB?AB12v2v??AABAB1A1A2?d?2r
6模型評價
模型的優(yōu)點:(1):模型通過一些合理的假設將模型簡化,使得模型更加的簡單,易解決問題。(2):模型更加全面介紹雙曲拋物面和直母線的一些特性而且使得模型更模型給出了一些數(shù)計,讓讀者能過更加明白的了解一些有
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年山東省職教高考《職測》核心考點必刷必練試題庫(含答案)
- 《鄉(xiāng)村振興促進法》參考試題庫80題(含答案)
- 《公務員法》考試題庫500題(含答案)
- 2025年江蘇農(nóng)林職業(yè)技術(shù)學院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 預防與解決勞動糾紛
- 人工智能應用開發(fā)合同
- 幼兒園紙張活動策劃方案模板五篇
- 建筑施工合同管理培訓.x
- 租賃房屋租賃合同
- 企業(yè)業(yè)務咨詢服務簡單合同
- 2023年四川省公務員錄用考試《行測》真題卷及答案解析
- 機電一體化系統(tǒng)設計-第5章-特性分析
- 2025年高考物理復習壓軸題:電磁感應綜合問題(原卷版)
- 鑄鋁焊接工藝
- 《社區(qū)康復》課件-第六章 骨關(guān)節(jié)疾病、損傷患者的社區(qū)康復實踐
- 2024年湖南省公務員考試行政職業(yè)能力測驗真題
- 攀巖運動之繩結(jié)技巧課程
- 防打架毆斗安全教育課件
- 采購行業(yè)的swot分析
- 石家莊長安區(qū)幼兒園信息統(tǒng)計表
- 最終稿(教學評一致)課件
評論
0/150
提交評論