版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列事件是確定事件的是()A.陰天一定會下雨B.黑暗中從5把不同的鑰匙中隨意摸出一把,用它打開了門C.打開電視機,任選一個頻道,屏幕上正在播放新聞聯播D.在五個抽屜中任意放入6本書,則至少有一個抽屜里有兩本書2.在一張考卷上,小華寫下如下結論,記正確的個數是m,錯誤的個數是n,你認為有公共頂點且相等的兩個角是對頂角若,則它們互余A.4 B. C. D.3.如圖,在下列條件中,不能判定直線a與b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°4.如圖,CE,BF分別是△ABC的高線,連接EF,EF=6,BC=10,D、G分別是EF、BC的中點,則DG的長為()A.6 B.5 C.4 D.35.如圖,在正方形ABCD中,E為AB的中點,G,F分別為AD、BC邊上的點,若AG=1,BF=2,∠GEF=90°,則GF的長為()A.2 B.3 C.4 D.56.估算的運算結果應在(
)A.2到3之間 B.3到4之間C.4到5之間 D.5到6之間7.一個幾何體的三視圖如圖所示,則該幾何體的形狀可能是()A.B.C.D.8.如圖,一場暴雨過后,垂直于地面的一棵樹在距地面1米處折斷,樹尖B恰好碰到地面,經測量AB=2m,則樹高為()米A. B. C.+1 D.39.若關于的一元二次方程有兩個不相等的實數根,則一次函數的圖象可能是:A. B. C. D.10.如圖,在Rt△ABC中,∠ACB=90°,點D,E分別是AB,BC的中點,點F是BD的中點.若AB=10,則EF=()A.2.5 B.3 C.4 D.5二、填空題(共7小題,每小題3分,滿分21分)11.太極揉推器是一種常見的健身器材.基本結構包括支架和轉盤,數學興趣小組的同學對某太極揉推器的部分數據進行了測量:如圖,立柱AB的長為125cm,支架CD、CE的長分別為60cm、40cm,支點C到立柱頂點B的距離為25cm.支架CD,CE與立柱AB的夾角∠BCD=∠BCE=45°,轉盤的直徑FG=MN=60cm,D,E分別是FG,MN的中點,且CD⊥FG,CE⊥MN,則兩個轉盤的最低點F,N距離地面的高度差為_____cm.(結果保留根號)12.我國古代數學著作《九章算術》卷七有下列問題:“今有共買物,人出八,盈三;人出七,不足四.問人數、物價幾何?”意思是:現在有幾個人共同出錢去買件物品,如果每人出8錢,則剩余3錢;如果每人出7錢,則差4錢.問有多少人,物品的價格是多少?設有人,則可列方程為__________.13.如圖,直線經過、兩點,則不等式的解集為_______.14.為了估計池塘里有多少條魚,從池塘里捕撈了1000條魚做上標記,然后放回池塘里,經過一段時間,等有標記的魚完全混合于魚群中以后,再捕撈200條,若其中有標記的魚有10條,則估計池塘里有魚_____條.15.若a:b=1:3,b:c=2:5,則a:c=_____.16.一元二次方程x﹣1=x2﹣1的根是_____.17.圖甲是小明設計的帶菱形圖案的花邊作品,該作品由形如圖乙的矩形圖案拼接而成(不重疊,無縫隙).圖乙種,,EF=4cm,上下兩個陰影三角形的面積之和為54cm2,其內部菱形由兩組距離相等的平行線交叉得到,則該菱形的周長為___cm三、解答題(共7小題,滿分69分)18.(10分)觀察下列各個等式的規(guī)律:第一個等式:=1,第二個等式:=2,第三個等式:=3…請用上述等式反映出的規(guī)律解決下列問題:直接寫出第四個等式;猜想第n個等式(用n的代數式表示),并證明你猜想的等式是正確的.19.(5分)如圖,在平面直角坐標系中,矩形OABC的頂點B坐標為(4,6),點P為線段OA上一動點(與點O、A不重合),連接CP,過點P作PE⊥CP交AB于點D,且PE=PC,過點P作PF⊥OP且PF=PO(點F在第一象限),連結FD、BE、BF,設OP=t.(1)直接寫出點E的坐標(用含t的代數式表示):;(2)四邊形BFDE的面積記為S,當t為何值時,S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說明理由.20.(8分)某跳水隊為了解運動員的年齡情況,作了一次年齡調查,根據跳水運動員的年齡(單位:歲),繪制出如下的統(tǒng)計圖①和圖②.請根據相關信息,解答下列問題:本次接受調查的跳水運動員人數為,圖①中m的值為;求統(tǒng)計的這組跳水運動員年齡數據的平均數、眾數和中位數.21.(10分)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.(1)請你用直尺和圓規(guī)作出這個輸水管道的圓形截面的圓心(保留作圖痕跡);(2)若這個輸水管道有水部分的水面寬AB=8cm,水面最深地方的高度為2cm,求這個圓形截面的半徑.22.(10分)如圖,點B、E、C、F在同一條直線上,AB=DE,AC=DF,BE=CF,求證:AB∥DE.23.(12分)【發(fā)現證明】如圖1,點E,F分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BE,EF,FD之間的數量關系.小聰把△ABE繞點A逆時針旋轉90°至△ADG,通過證明△AEF≌△AGF;從而發(fā)現并證明了EF=BE+FD.【類比引申】(1)如圖2,點E、F分別在正方形ABCD的邊CB、CD的延長線上,∠EAF=45°,連接EF,請根據小聰的發(fā)現給你的啟示寫出EF、BE、DF之間的數量關系,并證明;【聯想拓展】(2)如圖3,如圖,∠BAC=90°,AB=AC,點E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長.24.(14分)已知:如圖,在菱形中,點,,分別為,,的中點,連接,,,.求證:;當與滿足什么關系時,四邊形是正方形?請說明理由.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】試題分析:找到一定發(fā)生或一定不發(fā)生的事件即可.A、陰天一定會下雨,是隨機事件;B、黑暗中從5把不同的鑰匙中隨意摸出一把,用它打開了門,是隨機事件;C、打開電視機,任選一個頻道,屏幕上正在播放新聞聯播,是隨機事件;D、在學校操場上向上拋出的籃球一定會下落,是必然事件.故選D.考點:隨機事件.2、D【解析】
首先判斷出四個結論的錯誤個數和正確個數,進而可得m、n的值,再計算出即可.【詳解】解:有公共頂點且相等的兩個角是對頂角,錯誤;
,正確;
,錯誤;
若,則它們互余,錯誤;
則,,
,
故選D.【點睛】此題主要考查了二次根式的乘除、對頂角、科學記數法、余角和負整數指數冪,關鍵是正確確定m、n的值.3、C【解析】
解:A.∵∠1與∠2是直線a,b被c所截的一組同位角,∴∠1=∠2,可以得到a∥b,∴不符合題意B.∵∠2與∠3是直線a,b被c所截的一組內錯角,∴∠2=∠3,可以得到a∥b,∴不符合題意,C.∵∠3與∠5既不是直線a,b被任何一條直線所截的一組同位角,內錯角,∴∠3=∠5,不能得到a∥b,∴符合題意,D.∵∠3與∠4是直線a,b被c所截的一組同旁內角,∴∠3+∠4=180°,可以得到a∥b,∴不符合題意,故選C.【點睛】本題考查平行線的判定,難度不大.4、C【解析】
連接EG、FG,根據斜邊中線長為斜邊一半的性質即可求得EG=FG=BC,因為D是EF中點,根據等腰三角形三線合一的性質可得GD⊥EF,再根據勾股定理即可得出答案.【詳解】解:連接EG、FG,EG、FG分別為直角△BCE、直角△BCF的斜邊中線,∵直角三角形斜邊中線長等于斜邊長的一半∴EG=FG=BC=×10=5,∵D為EF中點∴GD⊥EF,即∠EDG=90°,又∵D是EF的中點,∴,在中,,故選C.【點睛】本題考查了直角三角形中斜邊上中線等于斜邊的一半的性質、勾股定理以及等腰三角形三線合一的性質,本題中根據等腰三角形三線合一的性質求得GD⊥EF是解題的關鍵.5、B【解析】∵四邊形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴,又∵AE=BE,∴AE2=AG?BF=2,∴AE=(舍負),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的長為3,故選B.【點睛】本題考查了相似三角形的性質的應用,利用勾股定理即可得解,解題的關鍵是證明△AEG∽△BFE.6、D【解析】
解:=,∵2<<3,∴在5到6之間.故選D.【點睛】此題主要考查了估算無理數的大小,正確進行計算是解題關鍵.7、D【解析】試題分析:由主視圖和左視圖可得此幾何體上面為臺,下面為柱體,由俯視圖為圓環(huán)可得幾何體為.故選D.考點:由三視圖判斷幾何體.視頻8、C【解析】由題意可知,AC=1,AB=2,∠CAB=90°據勾股定理則BC=m;∴AC+BC=(1+)m.答:樹高為(1+)米.故選C.9、B【解析】
由方程有兩個不相等的實數根,可得,解得,即異號,當時,一次函數的圖象過一三四象限,當時,一次函數的圖象過一二四象限,故答案選B.10、A【解析】
先利用直角三角形的性質求出CD的長,再利用中位線定理求出EF的長.【詳解】∵∠ACB=90°,D為AB中點∴CD=1∵點E、F分別為BC、BD中點∴EF=1故答案為:A.【點睛】本題考查的知識點是直角三角形的性質和中位線定理,解題關鍵是尋找EF與題目已知長度的線段的數量關系.二、填空題(共7小題,每小題3分,滿分21分)11、10【解析】
作FP⊥地面于P,CJ⊥PF于J,FQ∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.解直角三角形求出FP、NT即可解決問題.【詳解】解:作FP⊥地面于P,CJ⊥PF于J,FQ∥PA交CD于Q,QH⊥CJ于H.NT⊥地面于T.由題意△QDF,△QCH都是等腰直角三角形,四邊形FQHJ是矩形,∴DF=DQ=30cm,CQ=CD?DQ=60?30=30cm,∴FJ=QH=15cm,∵AC=AB?BC=125?25=100cm,∴PF=(15+100)cm,同法可求:NT=(100+5),∴兩個轉盤的最低點F,N距離地面的高度差為=(15+100)-(100+5)=10故答案為:10【點睛】本題考查解直角三角形的應用,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考??碱}型.12、【解析】
根據每人出8錢,則剩余3錢;如果每人出7錢,則差4錢,可以列出相應的方程,本題得以解決【詳解】解:由題意可設有人,列出方程:故答案為【點睛】本題考查由實際問題抽象出一元一次方程,解答本題的關鍵是明確題意,列出相應的方程.13、-1<X<2【解析】經過點A,∴不等式x>kx+b>-2的解集為.14、20000【解析】試題分析:1000÷=20000(條).考點:用樣本估計總體.15、2∶1【解析】分析:已知a、b兩數的比為1:3,根據比的基本性質,a、b兩數的比1:3=(1×2):(3×2)=2:6;而b、c的比為:2:5=(2×3):(5×3)=6:1;,所以a、c兩數的比為2:1.詳解:a:b=1:3=(1×2):(3×2)=2:6;
b:c=2:5=(2×3):(5×3)=6:1;,
所以a:c=2:1;
故答案為2:1.點睛:本題主要考查比的基本性質的實際應用,如果已知甲乙、乙丙兩數的比,那么可以根據比的基本性質求出任意兩數的比.16、x=0或x=1.【解析】
利用因式分解法求解可得.【詳解】∵(x﹣1)﹣(x+1)(x﹣1)=0,∴(x﹣1)(1﹣x﹣1)=0,即﹣x(x﹣1)=0,則x=0或x=1,故答案為:x=0或x=1.【點睛】本題主要考查了解一元二次方程的能力,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結合方程的特點選擇合適、簡便的方法是解題的關鍵.17、【解析】試題分析:根據,EF=4可得:AB=和BC的長度,根據陰影部分的面積為54可得陰影部分三角形的高,然后根據菱形的性質可以求出小菱形的邊長為,則菱形的周長為:×4=.考點:菱形的性質.三、解答題(共7小題,滿分69分)18、(1)=4;(2)=n.【解析】
試題分析:(1)根據題目中的式子的變化規(guī)律可以寫出第四個等式;(2)根據題目中的式子的變化規(guī)律可以猜想出第n等式并加以證明.試題解析:解:(1)由題目中式子的變化規(guī)律可得,第四個等式是:=4;(2)第n個等式是:=n.證明如下:∵===n∴第n個等式是:=n.點睛:本題考查規(guī)律型:數字的變化類,解答本題的關鍵是明確題目中式子的變化規(guī)律,求出相應的式子.19、(1)、(t+6,t);(2)、當t=2時,S有最小值是16;(3)、理由見解析.【解析】
(1)如圖所示,過點E作EG⊥x軸于點G,則∠COP=∠PGE=90°,由題意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),∴CO=PG=6、OP=EG=t,則OG=OP+PG=6+t,則點E的坐標為(t+6,t),(2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,∴AD=t(4﹣t),∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,∵EG⊥x軸、FP⊥x軸,且EG=FP,∴四邊形EGPF為矩形,∴EF⊥BD,EF=PG,∴S四邊形BEDF=S△BDF+S△BDE=×BD×EF=×(t2﹣t+6)×6=(t﹣2)2+16,∴當t=2時,S有最小值是16;(3)①假設∠FBD為直角,則點F在直線BC上,∵PF=OP<AB,∴點F不可能在BC上,即∠FBD不可能為直角;②假設∠FDB為直角,則點D在EF上,∵點D在矩形的對角線PE上,∴點D不可能在EF上,即∠FDB不可能為直角;③假設∠BFD為直角且FB=FD,則∠FBD=∠FDB=45°,如圖2,作FH⊥BD于點H,則FH=PA,即4﹣t=6﹣t,方程無解,∴假設不成立,即△BDF不可能是等腰直角三角形.20、(1)40人;1;(2)平均數是15;眾數16;中位數15.【解析】
(1)用13歲年齡的人數除以13歲年齡的人數所占的百分比,即可得本次接受調查的跳水運動員人數;用16歲年齡的人數除以本次接受調查的跳水運動員人數即可求得m的值;(2)根據統(tǒng)計圖中給出的信息,結合求平均數、眾數、中位數的方法求解即可.【詳解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案為40,1.(2)觀察條形統(tǒng)計圖,∵,∴這組數據的平均數為15;∵在這組數據中,16出現了12次,出現的次數最多,∴這組數據的眾數為16;∵將這組數據按照從小到大的順序排列,其中處于中間的兩個數都是15,有,∴這組數據的中位數為15.【點睛】本題考查了條形統(tǒng)計圖,扇形統(tǒng)計圖,掌握平均數、眾數和中位數的定義是解題的關鍵.21、(1)詳見解析;(2)這個圓形截面的半徑是5cm.【解析】
(1)根據尺規(guī)作圖的步驟和方法做出圖即可;(2)先過圓心作半徑,交于點,設半徑為,得出、的長,在中,根據勾股定理求出這個圓形截面的半徑.【詳解】(1)如圖,作線段AB的垂直平分線l,與弧AB交于點C,作線段AC的垂直平分線l′與直線l交于點O,點O即為所求作的圓心.(2)如圖,過圓心O作半徑CO⊥AB,交AB于點D,設半徑為r,則AD=AB=4,OD=r-2,在Rt△AOD中,r2=42+(r-2)2,解得r=5,答:這個圓形截面的半徑是5cm.【點睛】此題考查了垂徑定理和勾股定理,關鍵是根據題意畫出圖形,再根據勾股定理進行求解.22、詳見解析.【解析】試題分析:利用SSS證明△ABC≌△DEF,根據全等三角形的性質可得∠B=∠DEF,再由平行線的判定即可得AB∥DE.試題解析:證明:由BE=CF可得BC=EF,又AB=DE,AC=DF,故△ABC≌△DEF(SSS),則∠B=∠DEF,∴AB∥DE.考點:全等三角形的判定與性質.23、(1)DF=EF+BE.理由見解析;(2)CF=1.【解析】(1)把△ABE繞點A逆時針旋轉90°至△ADG,可使AB與AD重合,證出△AEF≌△AFG,根據全等三角形的性質得出EF=FG,即可得出答案;(2)根據旋轉的性質的AG=AE,CG=BE,∠ACG=∠B,∠EAG=90°,∠FCG=∠ACB+∠ACG=∠ACB+∠B=90°,根據勾股定理有FG2=FC2+CG2=BE2+FC2;關鍵全等三角形的性質得到FG=EF,利用勾股定理可得CF.解:(1)DF=EF+BE.理由:如圖1所示,∵AB=AD,∴把△ABE繞點A逆時針旋轉90°至△ADG,可使AB與AD重合,∵∠ADC=∠ABE=90°,∴點C、D、G在一條直線上,∴EB=DG,AE=AG,∠EAB=∠GAD,∵∠BAG+∠GAD=90°,∴∠EAG=∠BAD=90°,∵∠EAF=15°,∴∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度范例匯編【職工管理】十篇
- 《市場進入和效率》課件
- DBJ51-T 040-2021 四川省工程建設項目招標代理操作規(guī)程
- 超高層商住樓轉換層施工方案#模板工程#鋼筋工程#混凝土工程
- 《小數點移動》課件2
- 《寶馬銷售流程》課件
- 《電動力學chapter》課件
- 印刷包裝行業(yè)市場營銷經驗分享
- 電腦設備銷售員工作總結
- 玩具模型銷售工作總結
- 地脈動測試原理及應用
- 基坑排水計算
- 溝槽式連接管道工程技術規(guī)程
- 原料罐區(qū)設備操作規(guī)程
- 廈門市2023-2024學年度初中語文初一上學期語文期末質量檢測
- 項目施工員安全生產責任制考核記錄
- 中職英語教學總結
- 高中數學人教A版知識點與公式大全
- 2023年八省聯考普通高等學校招生全國統(tǒng)一考試語文試題含答案
- 《Windows 網絡操作系統(tǒng)》-教學教案
- 完整版成人教育計算機考試題目答案
評論
0/150
提交評論