初中三角函數(shù)知識點總結(jié)_第1頁
初中三角函數(shù)知識點總結(jié)_第2頁
初中三角函數(shù)知識點總結(jié)_第3頁
初中三角函數(shù)知識點總結(jié)_第4頁
初中三角函數(shù)知識點總結(jié)_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

初中三角函數(shù)知識點總結(jié)初中三角函數(shù)學問點總結(jié)

銳角三角函數(shù)

1、勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。a2b2c22、如下列圖,在Rt△ABC中,∠C為直角,則∠A的銳角三角函數(shù)為(∠A可換成∠B):

定義表達式取值范圍0sinA1關(guān)系(A+B=90)sinAcosBcosAsinBA的對邊正sinA斜邊弦A的鄰邊余cosA弦斜邊A的對邊正tanA切A的鄰邊A的鄰邊余cotAA的對邊切(∠A為銳角)0cosA1(∠A為銳角)tanA0sin2Acos2A1tanAcotBcotAtanBtanA1cotA(∠A為銳角)cotA0(倒數(shù))(∠A為銳角)tanAcotA13、任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值。

BsinAcosB由AB90得B90AcosAsinBsinAcos(90A)cosAsin(90A)A斜邊cb對a邊C

鄰邊

4、任意銳角的正切值等于它的余角的余切值;任意銳角的余切值等于它的余角的正切值。

tanAcotBcotAtanB由AB90得B90AtanAcot(90A)cotAtan(90A)5、0°、30°、45°、60°、90°特別角的三角函數(shù)值(重要)

三角函數(shù)sin0°-30°45°60°90°-costancot6、正弦、余弦的增減性:

當0°≤≤90°時,sin隨的增大而增大,cos隨的增大而減小。7、正切、余切的增減性:

當0°

1、解直角三角形的定義:已知邊和角(兩個,其中必有一邊)→全部未知的邊和角。

依據(jù):①邊的關(guān)系:a2b2c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義。(留意:盡量避開使用中間數(shù)據(jù)和除法)

2、應(yīng)用舉例:

(1)仰角:視線在水平線上方的角;俯角:視線在水平線下方的角。

鉛垂線仰角俯角視線水平線hih:lα視線

lhl(2)坡面的鉛直高度h和水平寬度l的比叫做坡度(坡比)。用字母i表示,即i形式,如i1:5等。

把坡面與水平面的夾角記作(叫做坡角),那么ihltan。

。坡度一般寫成1:m的

3、從某點的指北方向按順時針轉(zhuǎn)到目標方向的水平角,叫做方位角。如圖3,OA、OB、OC、OD的方向角分別是:45°、135°、225°。

4、指北或指南方向線與目標方向線所成的小于90°的水平角,叫做方向角。如圖4,OA、OB、OC、OD的方向角分別是:北偏東30°(東北方向),南偏東45°(東南方向),南偏西60°(西南方向),北偏西60°(西北方向)。

5、已知一個三角函數(shù)值,求其他三角函數(shù)值。例:sinA25,則cosA,tanA,cotA

6、三角形面積公式:

s12ah12abcosC(C為a,b邊的夾角)

另附習題:

1、計算

(1)

22sin45°+sin60°-2cos45°;(2)(1+2)0-|1-sin30°|1+(

115412)-1;

(3)sin60°+

11tan60-30

;(4)2-(201*+π)-cos60°-.22、(1)計算:tan1°tan2°tan3°…tan88°tan89°(2)已知sinα+cosα=值

,求sinαcosα的

(3)α為銳角,若sinα

擴展閱讀:初中三角函數(shù)學問點總結(jié)及典型習題

初三下學期銳角三角函數(shù)學問點總結(jié)及典型習題

1、勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。a2b2c22、如下列圖,在Rt△ABC中,∠C為直角,則∠A的銳角三角函數(shù)為(∠A可換成∠B):定義表達式取值范圍關(guān)系A(chǔ)的對邊正0sinA1asinAsinAc斜邊弦(∠A為銳角)A的鄰邊余0cosA1bcosAcosAc(∠A為銳角)斜邊弦A的對邊tanA0正atanAtanAb(∠A為銳角)A的鄰邊切sinAcosBcosAsinBsin2Acos2A1B3、任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值。sinAcosBcosAsinB

由AB90得B90AsinAcos(90A)cosAsin(90A)A斜邊c對a邊Cb鄰邊

5、30°、45°、60°特別角的三角函數(shù)值(重要)三角函數(shù)sin30°1245°222260°3212costan3233136、正弦、余弦的增減性:當0°≤≤90°時,sin隨的增大而增大,cos隨的增大而減小。7、正切、的增減性:

當0°

鉛垂線仰角俯角視線水平線h

ih:llα視線

h。坡度一般寫成1:ml(2)坡面的鉛直高度h和水平寬度l的比叫做坡度(坡比)。用字母i表示,即i的形式,如i1:5等。

htan。l3、從某點的指北方向按順時針轉(zhuǎn)到目標方向的水平角,叫做方位角。如圖3,OA、OB、OC、OD的方向角分別是:45°、135°、225°。

4、指北或指南方向線與目標方向線所成的小于90°的水平角,叫做方向角。如圖4,OA、OB、OC、OD的方向角分別是:北偏東30°(東北方向),南偏東45°(東南方向),南偏西60°(西南方向),北偏西60°(西北方向)。

把坡面與水平面的夾角記作(叫做坡角),那么i

3例1:已知在Rt△ABC中,C90°,sinA,則tanB的值為()

54453A.B.C.D.

3544

ab,tanBca3b4x4和a2b2c2;由s假如設(shè)a3x,則c5x,結(jié)合a2b2c2得b4x;∴tanBniA知,,

5a3x3【解析】此題考察三角函數(shù)的定義和勾股定理,在RTΔABC中,∠C=90°,則sinA所以選A.

例2:4cos30sin60(2)1(201*201*)0=______.

【解析】此題考察特別角的三角函數(shù)值.零指數(shù)冪.負整數(shù)指數(shù)冪的有關(guān)運算,

4cos30sin60(2)1(201*201*)0=4331331,故填.22222

1.某人想沿著梯子爬上高4米的房頂,梯子的傾斜角(梯子與地面的夾角)不能大于60°,否則就有危急,那么梯子的長至少為(C)

A.8米

-2-2

B.83米C.

83米3D.

43米

2.一架5米長的梯子斜靠在墻上,測得它與地面的夾角是40°,則梯子底端到墻的距離為(B)

55A.5sin40°B.5cos40°C.D.

tan40°cos40°3.如圖是某商場一樓與二樓之間的手扶電梯示意圖.其中AB、CD分別表示一樓、二樓地面的水平線,∠ABC=150°,BC的長是8m,則乘電梯從點B到點C上升的高度h是(B)A.83mB.4m31AB

BChD

C.43mD.8m

4.河堤橫斷面如下圖,堤高BC=5米,迎水坡AB的坡比是1:3(坡比是坡面的鉛直高度BC與水平寬度AC之比),則AC的長是(A)

A.53米B.10米C.15米D.103米

CA5.如圖,在矩形ABCD中,DE⊥AC于E,∠EDC∶∠EDA=1∶3,且AC=10,則DE的長度是(D)A.3B.5C.52D.

252

6.如下圖,小明在家里樓頂上的點A處,測量建在與小明家樓房同一水平線上相鄰的電梯樓的高,在點A處看電梯樓頂部點B處的仰角為60°,在點A處看這棟電梯樓底部點C處的俯角為45°,兩棟樓之間的距離為30m,則電梯樓的高BC為82.0米(準確到0.1).(參考數(shù)據(jù):2≈1.4143≈1.732)

7.如圖,熱氣球的探測器顯示,從熱氣球A看一棟大樓頂部B的俯角為30°,看這棟大樓底部C的俯角為60°,熱氣球A的高度為240米,求這棟大樓的高度.

解:過點A作直線BC的垂線,垂足為點D.

則CDA90°,CAD60°,BAD30°,CD=240米.

ACD在Rt△ACD中,tanCAD,B

AD-3-3

ADCD240803.

tan60°3

在Rt△ABD中,tanBADBDADtan30°803BD,AD380.3BCCDBD24080=160.答:這棟大樓的高為160米.

8.如下圖,城關(guān)幼兒園為加強安全治理,打算將園內(nèi)的滑滑板的傾斜角由45°降為30°,已知原滑滑板AB的長為4米,點D、B、C在同一水平面上.

(1)改善后滑滑板會加長多少米?

(2)若滑滑板的正前方能有3米長的空地就能保證安全,原滑滑板的前方有6米長的空地,像這樣改造是否可行?請說明理由.

(參考數(shù)據(jù):21.141,31.732,62.449,以上結(jié)果均保存到小數(shù)點后兩位.)

解:(1)在Rt△ABC中,∠ABC=45°

∴AC=BC=ABsin45°=42222在Rt△ADC中,∠ADC=30°AC1∴AD=2242o2sin30∴AD-AB=4241.66∴改善后滑滑板會加長約1.66米.(2)這樣改造能行,理由如下:∵CDAC322264.989

3tan30o∴BDCDBC2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論