版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第中考數(shù)學(xué)復(fù)習(xí)難點知識總結(jié)有什么
數(shù)學(xué)中考知識點總結(jié):圓
一、圓
1、圓的有關(guān)性質(zhì)
在一個平面內(nèi),線段OA繞它固定的一個端點O旋轉(zhuǎn)一周,另一個端點A隨之旋轉(zhuǎn)所形成的圖形叫圓,固定的端點O叫圓心,線段OA叫半徑。
由圓的意義可知:
圓上各點到定點(圓心O)的距離等于定長的點都在圓上。
就是說:圓是到定點的距離等于定長的點的集合,圓的內(nèi)部可以看作是到圓。心的距離小于半徑的點的集合。
圓的外部可以看作是到圓心的距離大于半徑的點的集合。連結(jié)圓上任意兩點的線段叫做弦,經(jīng)過圓心的弦叫直徑。圓上任意兩點間的部分叫圓弧,簡稱弧。
圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫半圓,大于半圓的弧叫優(yōu)弧;小于半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。
圓心相同,半徑不相等的兩個圓叫同心圓。
能夠重合的兩個圓叫等圓。
同圓或等圓的半徑相等。
在同圓或等圓中,能夠互相重合的弧叫等弧。
二、過三點的圓
l、過三點的圓
過三點的圓的作法:利用中垂線找圓心
定理:不在同一直線上的三個點確定一個圓。
經(jīng)過三角形各頂點的圓叫三角形的外接圓,外接圓的圓心叫外心,這個三角形叫圓的內(nèi)接三角形。
2、反證法
反證法的三個步驟:
①假設(shè)命題的結(jié)論不成立;
②從這個假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;
③由矛盾得出假設(shè)不正確,從而肯定命題的結(jié)論正確。
例如:求證三角形中最多只有一個角是鈍角。
證明:設(shè)有兩個以上是鈍角
則兩個鈍角之和180°
與三角形內(nèi)角和等于180°矛盾。
不可能有二個以上是鈍角。
即最多只能有一個是鈍角。
三、垂直于弦的直徑
圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它的對稱軸。
垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的兩條弧。
推理1:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對兩條弧。
弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。
平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一個條弧。
推理2:圓兩條平行弦所夾的弧相等。
四、圓心角、弧、弦、弦心距之間的關(guān)系
圓是以圓心為對稱中心的中心對稱圖形。
實際上,圓繞圓心旋轉(zhuǎn)任意一個角度,都能夠與原來的圖形重合。
頂點是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。
定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。
推理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等。
五、圓周角
頂點在圓上,并且兩邊都和圓相交的角叫圓周角。
推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推理3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。
由于以上的定理、推理,所添加輔助線往往是添加能構(gòu)成直徑上的圓周角的輔助線。
數(shù)學(xué)中考知識點總結(jié)-相似形
直角三角形相似的判定定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似。
說明:以上四個判定定理不難證明,以下判定三角形相似的命題是正確的,在解題時,也可以用它們來判定兩個三角形的相似。
第一:頂角(或底角)相等的兩個等腰三角形相似。
第二:腰和底對應(yīng)成比例的兩個等腰三角形相似。
第三:有一個銳角相等的兩個直角三角形相似。
第四:直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似。
第五:如果一個三角形的兩邊和其中一邊上的中線與另一個三角形的兩邊和其中一邊上的中線對應(yīng)成比例,那么這兩個三角形.相似。
相似三角形的性質(zhì):
(1)相似三角形性質(zhì)1:相似三角形對應(yīng)高的比、對應(yīng)中線的比、對應(yīng)角平分線的比都等于相似比。
(2)相似三角形性質(zhì)2:相似三角形周長的比等于相似比。
說明:以上兩個性質(zhì)簡單記為:相似三角形對應(yīng)線段的比等于相似比。
(3)相似三角形面積的比等于相似比的平方。
數(shù)學(xué)中考知識點總結(jié)-線段、角、線
一、直線:直線是幾何中不加定義的基本概念,直線的兩大特征是“直”和“向兩方無限延伸”。
二、直線的性質(zhì):經(jīng)過兩點有一條直線,并且只有一條直線,直線的這條性質(zhì)是以公理的形式給出的,可簡述為:過兩點有且只有一條直線,兩直線相交,只有一個交點。
三、射線:
1、射線的定義:直線上一點和它們的一旁的部分叫做射線。
2.射線的特征:“向一方無限延伸,它有一個端點?!?/p>
四、線段:
1、線段的定義:直線上兩點和它之間的部分叫做線段,這兩點叫做線段的端點。
2、線段的性質(zhì)(公理):所有連接兩點的線中,線段最短。
五、角
1、角的兩種定義:一種是有公共端點的兩條射線所組成的圖形叫做角。要弄清定義中的兩個重點①角是由兩條射線組成的圖形;②這兩條射線必須有一個公共端點。另一種是一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。可以看出在起始位置的射線與終止位置的射線就形成了一個角。
六、角的分類:
(1)銳角:小于直角的角叫做銳角
(2)直角:平角的一半叫做直角
(3)鈍角:大于直角而小于平角的角
(4)平角:把一條射線,繞著它的端點順著一個方向旋轉(zhuǎn),當(dāng)終止位置和起始位置成一直線時,所成的角叫做平角。
(5)周角:把一條射線,繞著它的端點順著一個方向旋轉(zhuǎn),當(dāng)終邊和始邊重合時,所成的角叫做周角。
(6)周角、平角、直角的關(guān)系是:l周角=2平角=4直角=360°
七、相關(guān)的角:
1、對頂角:一個角的兩邊分別是另一個角的兩邊的反向延長線,這兩個角叫做對頂角。
2、互為補(bǔ)角:如果兩個角的和是一個平角,這兩個角做互為補(bǔ)角。
3、互為余角:如果兩個角的和是一個直角,這兩個角叫做互為余角。
4、鄰補(bǔ)角:有公共頂點,一條公共邊,另兩條邊互為反向延長線的兩個角做互為鄰補(bǔ)角。
注意:互余、互補(bǔ)是指兩個角的數(shù)量關(guān)系,與兩個角的位置無關(guān),而互為鄰補(bǔ)角則要求兩個角有特殊的位置關(guān)系。
八、角的性質(zhì)
1、對頂角相等。
2、同角或等角的余角相等。
3、同角或等角的補(bǔ)角相等。
九、相交線
1、斜線:兩條直線相交不成直角時,其中一條直線叫做另一條直線的斜線。它們的交點叫做斜足。
2、兩條直線互相垂直:當(dāng)兩條直線相交所成的四個角中,有一個角是直角時,就說這兩條直線互相垂直。
3、垂線:當(dāng)兩條直線互相垂直時,其中的一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
4、垂線的性質(zhì)
(l)過一點有且只有一條直線與己知直線垂直。
(2)直線外一點與直線上各點連結(jié)的所有線段中,垂線段最短。簡單說:垂線段最短。
十、距離
1、兩點的距離:連結(jié)兩點的線段的長度叫做兩點的距離。
2、從直線外一點到這條直線的垂線段的長度叫做點到直線的距離。
3、兩條平行線的距離:兩條直線平行,從一條直線上的任意一點向另一條直線引垂線,垂線段的長度,叫做兩條平行線的距離。
說明:點到直線的距離和平行線的距離實際上是兩個特殊點之間的距離,它們與點到直線的垂線段是分不開的。
十一、平行線
1、定義:在同一平面內(nèi),不相交的兩條直線叫做平行線。
2、平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行。
3、平行公理的推論:如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行。
說明:也可以說兩條射線或兩條線段平行,這實際上是指它們所在的直線平行。
4、平行線的判定:
(1)同位角相等,兩直線平行。
(2)內(nèi)錯角相等,兩直線平行。
(3)同旁內(nèi)角互補(bǔ),兩直線平行。
5、平行線的性質(zhì)
(1)兩直線平行,同位角相等。
(2)兩直線平行,內(nèi)錯角相等。
(3)兩直線平行
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 臨時勞動合同管理規(guī)定
- 一紙合同定乾坤:離婚孩子撫養(yǎng)權(quán)新規(guī)
- 個人合同轉(zhuǎn)讓授權(quán)委托書范文
- 個人與個人投資合作合同
- 中外技術(shù)研發(fā)合作合同范本
- 個人貸款合同模板版
- 個人與公司間的借款合同范本
- 個人與企業(yè)土地購置合同
- 上海市常用勞務(wù)合同范本
- 個人房產(chǎn)抵押借款合同
- 2022年中國電信維護(hù)崗位認(rèn)證動力專業(yè)考試題庫大全-上(單選、多選題)
- 《電氣作業(yè)安全培訓(xùn)》課件
- 水平二(四年級第一學(xué)期)體育《小足球(18課時)》大單元教學(xué)計劃
- 《關(guān)于時間管理》課件
- 醫(yī)藥高等數(shù)學(xué)智慧樹知到課后章節(jié)答案2023年下浙江中醫(yī)藥大學(xué)
- 城市道路智慧路燈項目 投標(biāo)方案(技術(shù)標(biāo))
- 水泥采購?fù)稑?biāo)方案(技術(shù)標(biāo))
- 醫(yī)院招標(biāo)采購管理辦法及實施細(xì)則(試行)
- 初中英語-Unit2 My dream job(writing)教學(xué)設(shè)計學(xué)情分析教材分析課后反思
- 廣州市勞動仲裁申請書
- 江西省上饒市高三一模理綜化學(xué)試題附參考答案
評論
0/150
提交評論