石家莊市2023年中考數學四模試卷含解析_第1頁
石家莊市2023年中考數學四模試卷含解析_第2頁
石家莊市2023年中考數學四模試卷含解析_第3頁
石家莊市2023年中考數學四模試卷含解析_第4頁
石家莊市2023年中考數學四模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,將含60°角的直角三角板ABC繞頂點A順時針旋轉45°度后得到△AB′C′,點B經過的路徑為弧BB′,若∠BAC=60°,AC=1,則圖中陰影部分的面積是()A. B. C. D.π2.PM2.5是指大氣中直徑小于或等于2.5μm(1μm=0.000001m)的顆粒物,也稱為可入肺顆粒物,它們含有大量的有毒、有害物質,對人體健康和大氣環(huán)境質量有很大危害.2.5μm用科學記數法可表示為()A. B. C. D.3.分式方程=1的解為()A.x=1 B.x=0 C.x=﹣ D.x=﹣14.如圖,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,點E是△ABC的內心,過點E作EF∥AB交AC于點F,則EF的長為()A. B. C. D.5.如圖,在中,邊上的高是()A. B. C. D.6.已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論:①abc<0;②2a+b=0;③b2-4ac<0;④9a+3b+c>0;⑤c+8a<0.正確的結論有().A.1個 B.2個 C.3個 D.4個7.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值為()A. B. C. D.8.在以下四個圖案中,是軸對稱圖形的是()A. B. C. D.9.如圖,把△ABC剪成三部分,邊AB,BC,AC放在同一直線上,點O都落在直線MN上,直線MN∥AB,則點O是△ABC的()A.外心 B.內心 C.三條中線的交點 D.三條高的交點10.如圖,AB是⊙O的直徑,D,E是半圓上任意兩點,連接AD,DE,AE與BD相交于點C,要使△ADC與△BDA相似,可以添加一個條件.下列添加的條件中錯誤的是()A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD二、填空題(共7小題,每小題3分,滿分21分)11.桌上擺著一個由若干個相同正方體組成的幾何體,其主視圖和左視圖如圖所示,這個幾何體最多可以由___________個這樣的正方體組成.12.分解因式___________13.如圖,直線l⊥x軸于點P,且與反比例函數y1=(x>0)及y2=(x>0)的圖象分別交于點A,B,連接OA,OB,已知△OAB的面積為2,則k1-k2=________.14.在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間.甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲、乙行駛過程中,甲、乙兩車各自與C地的距離y(km)與甲車行駛時間t(h)之間的函數關系如圖所示.則當乙車到達A地時,甲車已在C地休息了_____小時.15.已知函數y=|x2﹣x﹣2|,直線y=kx+4恰好與y=|x2﹣x﹣2|的圖象只有三個交點,則k的值為_____.16.如圖,分別以正六邊形相間隔的3個頂點為圓心,以這個正六邊形的邊長為半徑作扇形得到“三葉草”圖案,若正六邊形的邊長為3,則“三葉草”圖案中陰影部分的面積為_____(結果保留π)17.如圖,正方形ABCD中,AB=2,將線段CD繞點C順時針旋轉90°得到線段CE,線段BD繞點B順時針旋轉90°得到線段BF,連接BF,則圖中陰影部分的面積是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,∠ABC=90°,以AB為直徑的⊙O與AC邊交于點D,過點D的直線交BC邊于點E,∠BDE=∠A.判斷直線DE與⊙O的位置關系,并說明理由.若⊙O的半徑R=5,tanA=,求線段CD的長.19.(5分)化簡:(x+7)(x-6)-(x-2)(x+1)20.(8分)如圖,已知與拋物線C1過A(-1,0)、B(3,0)、C(0,-3).(1)求拋物線C1的解析式.(2)設拋物線的對稱軸與x軸交于點P,D為第四象限內的一點,若△CPD為等腰直角三角形,求出D點坐標.21.(10分)如圖,在邊長為1的小正方形組成的方格紙上,將△ABC繞著點A順時針旋轉90°畫出旋轉之后的△AB′C′;求線段AC旋轉過程中掃過的扇形的面積.22.(10分)如圖,可以自由轉動的轉盤被它的兩條直徑分成了四個分別標有數字的扇形區(qū)域,其中標有數字“1”的扇形圓心角為120°.轉動轉盤,待轉盤自動停止后,指針指向一個扇形的內部,則該扇形內的數字即為轉出的數字,此時,稱為轉動轉盤一次(若指針指向兩個扇形的交線,則不計轉動的次數,重新轉動轉盤,直到指針指向一個扇形的內部為止)(1)轉動轉盤一次,求轉出的數字是-2的概率;(2)轉動轉盤兩次,用樹狀圖或列表法求這兩次分別轉出的數字之積為正數的概率.23.(12分)如圖已知△ABC,點D是AB上一點,連接CD,請用尺規(guī)在邊AC上求作點P,使得△PBC的面積與△DBC的面積相等(保留作圖痕跡,不寫做法)24.(14分)尺規(guī)作圖:校園有兩條路OA、OB,在交叉路口附近有兩塊宣傳牌C、D,學校準備在這里安裝一盞路燈,要求燈柱的位置P離兩塊宣傳牌一樣遠,并且到兩條路的距離也一樣遠,請你幫助畫出燈柱的位置P.(不寫畫圖過程,保留作圖痕跡)

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】試題解析:如圖,∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°=1×=,AB=2∴S△ABC=AC?BC=.根據旋轉的性質知△ABC≌△AB′C′,則S△ABC=S△AB′C′,AB=AB′.∴S陰影=S扇形ABB′+S△AB′C′-S△ABC==.故選A.考點:1.扇形面積的計算;2.旋轉的性質.2、C【解析】試題分析:大于0而小于1的數用科學計數法表示,10的指數是負整數,其絕對值等于第一個不是0的數字前所有0的個數.考點:用科學計數法計數3、C【解析】

首先找出分式的最簡公分母,進而去分母,再解分式方程即可.【詳解】解:去分母得:x2-x-1=(x+1)2,整理得:-3x-2=0,解得:x=-,檢驗:當x=-時,(x+1)2≠0,故x=-是原方程的根.故選C.【點睛】此題主要考查了解分式方程的解法,正確掌握解題方法是解題關鍵.4、A【解析】

過E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依據△ABC∽△GEF,即可得到EG:EF:GF,根據斜邊的長列方程即可得到結論.【詳解】過E作EG∥BC,交AC于G,則∠BCE=∠CEG.∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,設EG=4k=AG,則EF=3k=CF,FG=5k.∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=3k=.故選A.【點睛】本題考查了相似三角形的判定與性質,等腰三角形的性質以及勾股定理的綜合運用,解決問題的關鍵是作輔助線構相似三角形以及構造等腰三角形.5、D【解析】

根據三角形的高線的定義解答.【詳解】根據高的定義,AF為△ABC中BC邊上的高.故選D.【點睛】本題考查了三角形的高的定義,熟記概念是解題的關鍵.6、C【解析】

由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.【詳解】解:拋物線開口向下,得:a<0;拋物線的對稱軸為x=-=1,則b=-2a,2a+b=0,b=-2a,故b>0;拋物線交y軸于正半軸,得:c>0.∴abc<0,①正確;2a+b=0,②正確;由圖知:拋物線與x軸有兩個不同的交點,則△=b2-4ac>0,故③錯誤;由對稱性可知,拋物線與x軸的正半軸的交點橫坐標是x=3,所以當x=3時,y=9a+3b+c=0,故④錯誤;觀察圖象得當x=-2時,y<0,即4a-2b+c<0∵b=-2a,∴4a+4a+c<0即8a+c<0,故⑤正確.正確的結論有①②⑤,故選:C【點睛】主要考查圖象與二次函數系數之間的關系,會利用對稱軸的表達式求2a與b的關系,以及二次函數與方程之間的轉換,根的判別式的熟練運用.7、A【解析】

根據銳角三角函數的定義求出即可.【詳解】解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴tanA=.故選A.【點睛】本題考查了銳角三角函數的定義,熟記銳角三角函數的定義內容是解題的關鍵.8、A【解析】

根據軸對稱圖形的概念對各選項分析判斷利用排除法求解.【詳解】A、是軸對稱圖形,故本選項正確;

B、不是軸對稱圖形,故本選項錯誤;

C、不是軸對稱圖形,故本選項錯誤;

D、不是軸對稱圖形,故本選項錯誤.

故選:A.【點睛】本題考查了軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.9、B【解析】

利用平行線間的距離相等,可知點到、、的距離相等,然后可作出判斷.【詳解】解:如圖,過點作于,于,于.圖1,(夾在平行線間的距離相等).如圖:過點作于,作于E,作于.由題意可知:,,,∴,∴圖中的點是三角形三個內角的平分線的交點,點是的內心,故選B.【點睛】本題考查平行線間的距離,角平分線定理,三角形的內心,解題的關鍵是判斷出.10、D【解析】

解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A選項正確;∵AD=DE,∴,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B選項正確;∵AD2=BD?CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C選項正確;∵CD?AB=AC?BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是對應夾角,故D選項錯誤,故選:D.考點:1.圓周角定理2.相似三角形的判定二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

主視圖、左視圖是分別從物體正面、左面看,所得到的圖形.【詳解】易得第一層最多有9個正方體,第二層最多有4個正方體,所以此幾何體共有1個正方體.故答案為1.12、【解析】

原式提取公因式,再利用完全平方公式分解即可.【詳解】原式=2x(y2+2y+1)=2x(y+1)2,故答案為2x(y+1)2【點睛】此題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.13、2【解析】

試題分析:∵反比例函數(x>1)及(x>1)的圖象均在第一象限內,∴>1,>1.∵AP⊥x軸,∴S△OAP=,S△OBP=,∴S△OAB=S△OAP﹣S△OBP==2,解得:=2.故答案為2.14、2.1.【解析】

根據題意和函數圖象中的數據可以求得乙車的速度和到達A地時所用的時間,從而可以解答本題.【詳解】由題意可得,甲車到達C地用時4個小時,乙車的速度為:200÷(3.1﹣1)=80km/h,乙車到達A地用時為:(200+240)÷80+1=6.1(小時),當乙車到達A地時,甲車已在C地休息了:6.1﹣4=2.1(小時),故答案為:2.1.【點睛】本題考查了一次函數的圖象,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.15、1﹣1或﹣1【解析】

直線y=kx+4與拋物線y=-x1+x+1(-1≤x≤1)相切時,直線y=kx+4與y=|x1-x-1|的圖象恰好有三個公共點,即-x1+x+1=kx+4有相等的實數解,利用根的判別式的意義可求出此時k的值,另外當y=kx+4過(1,0)時,也滿足條件.【詳解】解:當y=0時,x1-x-1=0,解得x1=-1,x1=1,

則拋物線y=x1-x-1與x軸的交點為(-1,0),(1,0),

把拋物線y=x1-x-1圖象x軸下方的部分沿x軸翻折到x軸上方,

則翻折部分的拋物線解析式為y=-x1+x+1(-1≤x≤1),

當直線y=kx+4與拋物線y=-x1+x+1(-1≤x≤1)相切時,

直線y=kx+4與函數y=|x1-x-1|的圖象恰好有三個公共點,

即-x1+x+1=kx+4有相等的實數解,整理得x1+(k-1)x+1=0,△=(k-1)1-8=0,

解得k=1±1,

所以k的值為1+1或1-1.

當k=1+1時,經檢驗,切點橫坐標為x=-<-1不符合題意,舍去.

當y=kx+4過(1,0)時,k=-1,也滿足條件,故答案為1-1或-1.【點睛】本題考查了二次函數與幾何變換:翻折變化不改變圖形的大小,故|a|不變,利用頂點式即可求得翻折后的二次函數解析式;也可利用絕對值的意義,直接寫出自變量在-1≤x≤1上時的解析式。16、18π【解析】

根據“三葉草”圖案中陰影部分的面積為三個扇形面積的和,利用扇形面積公式解答即可.【詳解】解:∵正六邊形的內角為=120°,∴扇形的圓心角為360°?120°=240°,∴“三葉草”圖案中陰影部分的面積為=18π,故答案為18π.【點睛】此題考查正多邊形與圓,關鍵是根據“三葉草”圖案中陰影部分的面積為三個扇形面積的和解答.17、6﹣π【解析】過F作FM⊥BE于M,則∠FME=∠FMB=90°,

∵四邊形ABCD是正方形,AB=2,

∴∠DCB=90°,DC=BC=AB=2,∠DCB=45°,

由勾股定理得:BD=2,

∵將線段CD繞點C順時針旋轉90°得到線段CE,線段BD繞點B順時針旋轉90°得到線段BF,

∴∠DCE=90°,BF=BD=2,∠FBE=90°-45°=45°,

∴BM=FM=2,ME=2,

∴陰影部分的面積=×2×2+×4×2+-=6-π.

故答案為:6-π.點睛:本題考查了旋轉的性質,解直角三角形,正方形的性質,扇形的面積計算等知識點,能求出各個部分的面積是解此題的關鍵.三、解答題(共7小題,滿分69分)18、(1)DE與⊙O相切;理由見解析;(2).【解析】

(1)連接OD,利用圓周角定理以及等腰三角形的性質得出OD⊥DE,進而得出答案;(2)得出△BCD∽△ACB,進而利用相似三角形的性質得出CD的長.【詳解】解:(1)直線DE與⊙O相切.理由如下:連接OD.∵OA=OD∴∠ODA=∠A又∵∠BDE=∠A∴∠ODA=∠BDE∵AB是⊙O直徑∴∠ADB=90°即∠ODA+∠ODB=90°∴∠BDE+∠ODB=90°∴∠ODE=90°∴OD⊥DE∴DE與⊙O相切;(2)∵R=5,∴AB=10,在Rt△ABC中∵tanA=∴BC=AB?tanA=10×,∴AC=,∵∠BDC=∠ABC=90°,∠BCD=∠ACB∴△BCD∽△ACB∴∴CD=.【點睛】本題考查切線的判定、勾股定理及相似三角形的判定與性質,掌握相關性質定理靈活應用是本題的解題關鍵.19、2x-40.【解析】

原式利用多項式乘以多項式法則計算,去括號合并即可.【詳解】解:原式=x2-6x+7x-42-x2-x+2x+2=2x-40.【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.20、(1)y=x2-2x-3,(2)D1(4,-1),D2(3,-4),D3(2,-2)【解析】

(1)設解析式為y=a(x-3)(x+1),把點C(0,-3)代入即可求出解析式;(2)根據題意作出圖形,根據等腰直角三角形的性質即可寫出坐標.【詳解】(1)設解析式為y=a(x-3)(x+1),把點C(0,-3)代入得-3=a×(-3)×1解得a=1,∴解析式為y=x2-2x-3,(2)如圖所示,對稱軸為x=1,過D1作D1H⊥x軸,∵△CPD為等腰直角三角形,∴△OPC≌△HD1P,∴PH=OC=3,HD1=OP=1,∴D1(4,-1)過點D2F⊥y軸,同理△OPC≌△FCD2,∴FD2=3,CF=1,故D2(3,-4)由圖可知CD1與PD2交于D3,此時PD3⊥CD3,且PD3=CD3,PC=,∴PD3=CD3=故D3(2,-2)∴D1(4,-1),D2(3,-4),D3(2,-2)使△CPD為等腰直角三角形.【點睛】此題主要考察二次函數與等腰直角三角形結合的題,解題的關鍵是熟知二次函數的圖像與性質及等腰直角三角形的性質.21、.(1)見解析(2)【解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論