版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年山東省鄒平雙語(yǔ)學(xué)校三區(qū)高三下學(xué)期適應(yīng)性月考卷(三)數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在“一帶一路”知識(shí)測(cè)驗(yàn)后,甲、乙、丙三人對(duì)成績(jī)進(jìn)行預(yù)測(cè).甲:我的成績(jī)比乙高.乙:丙的成績(jī)比我和甲的都高.丙:我的成績(jī)比乙高.成績(jī)公布后,三人成績(jī)互不相同且只有一個(gè)人預(yù)測(cè)正確,那么三人按成績(jī)由高到低的次序?yàn)锳.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙2.“十二平均律”是通用的音律體系,明代朱載堉最早用數(shù)學(xué)方法計(jì)算出半音比例,為這個(gè)理論的發(fā)展做出了重要貢獻(xiàn).十二平均律將一個(gè)純八度音程分成十二份,依次得到十三個(gè)單音,從第二個(gè)單音起,每一個(gè)單音的頻率與它的前一個(gè)單音的頻率的比都等于.若第一個(gè)單音的頻率為f,則第八個(gè)單音的頻率為A. B.C. D.3.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,則不可能為()A. B. C. D.4.函數(shù)(且)的圖象可能為()A. B. C. D.5.已知函數(shù)為奇函數(shù),且,則()A.2 B.5 C.1 D.36.已知雙曲線的一條漸近線方程為,則雙曲線的離心率為()A. B. C. D.7.設(shè)函數(shù),的定義域都為,且是奇函數(shù),是偶函數(shù),則下列結(jié)論正確的是()A.是偶函數(shù) B.是奇函數(shù)C.是奇函數(shù) D.是奇函數(shù)8.已知函數(shù),其中,若恒成立,則函數(shù)的單調(diào)遞增區(qū)間為()A. B.C. D.9.用1,2,3,4,5組成不含重復(fù)數(shù)字的五位數(shù),要求數(shù)字4不出現(xiàn)在首位和末位,數(shù)字1,3,5中有且僅有兩個(gè)數(shù)字相鄰,則滿足條件的不同五位數(shù)的個(gè)數(shù)是()A.48 B.60 C.72 D.12010.設(shè),是兩條不同的直線,,是兩個(gè)不同的平面,給出下列四個(gè)命題:①若,,則;②若,,則;③若,,則;④若,,則;其中真命題的個(gè)數(shù)為()A. B. C. D.11.如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為()A. B.C. D.12.已知函數(shù),若曲線在點(diǎn)處的切線方程為,則實(shí)數(shù)的取值為()A.-2 B.-1 C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線(a>0,b>0)的兩個(gè)焦點(diǎn)為、,點(diǎn)P是第一象限內(nèi)雙曲線上的點(diǎn),且,tan∠PF2F1=﹣2,則雙曲線的離心率為_____.14.在中,已知,,則A的值是______.15.古代“五行”學(xué)認(rèn)為:“物質(zhì)分金、木、土、水、火五種屬性,金克木,木克土,土克水,水克火,火克金.”將五種不同屬性的物質(zhì)任意排成一列,但排列中屬性相克的兩種物質(zhì)不相鄰,則這樣的排列方法有_________種.(用數(shù)字作答)16.已知函數(shù)()在區(qū)間上的值小于0恒成立,則的取值范圍是________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)函數(shù),且恒成立.(1)求實(shí)數(shù)的集合;(2)當(dāng)時(shí),判斷圖象與圖象的交點(diǎn)個(gè)數(shù),并證明.(參考數(shù)據(jù):)18.(12分)已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).(1)當(dāng)時(shí),證明:對(duì);(2)若函數(shù)在上存在極值,求實(shí)數(shù)的取值范圍。19.(12分)已知二階矩陣A=abcd,矩陣A屬于特征值λ1=-1的一個(gè)特征向量為α120.(12分)2019年底,北京2022年冬奧組委會(huì)啟動(dòng)志愿者全球招募,僅一個(gè)月內(nèi)報(bào)名人數(shù)便突破60萬(wàn),其中青年學(xué)生約有50萬(wàn)人.現(xiàn)從這50萬(wàn)青年學(xué)生志愿者中,按男女分層抽樣隨機(jī)選取20人進(jìn)行英語(yǔ)水平測(cè)試,所得成績(jī)(單位:分)統(tǒng)計(jì)結(jié)果用莖葉圖記錄如下:(Ⅰ)試估計(jì)在這50萬(wàn)青年學(xué)生志愿者中,英語(yǔ)測(cè)試成績(jī)?cè)?0分以上的女生人數(shù);(Ⅱ)從選出的8名男生中隨機(jī)抽取2人,記其中測(cè)試成績(jī)?cè)?0分以上的人數(shù)為X,求的分布列和數(shù)學(xué)期望;(Ⅲ)為便于聯(lián)絡(luò),現(xiàn)將所有的青年學(xué)生志愿者隨機(jī)分成若干組(每組人數(shù)不少于5000),并在每組中隨機(jī)選取個(gè)人作為聯(lián)絡(luò)員,要求每組的聯(lián)絡(luò)員中至少有1人的英語(yǔ)測(cè)試成績(jī)?cè)?0分以上的概率大于90%.根據(jù)圖表中數(shù)據(jù),以頻率作為概率,給出的最小值.(結(jié)論不要求證明)21.(12分)已知函數(shù),,若存在實(shí)數(shù)使成立,求實(shí)數(shù)的取值范圍.22.(10分)在直角坐標(biāo)平面中,已知的頂點(diǎn),,為平面內(nèi)的動(dòng)點(diǎn),且.(1)求動(dòng)點(diǎn)的軌跡的方程;(2)設(shè)過(guò)點(diǎn)且不垂直于軸的直線與交于,兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,證明:直線過(guò)軸上的定點(diǎn).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
利用逐一驗(yàn)證的方法進(jìn)行求解.【詳解】若甲預(yù)測(cè)正確,則乙、丙預(yù)測(cè)錯(cuò)誤,則甲比乙成績(jī)高,丙比乙成績(jī)低,故3人成績(jī)由高到低依次為甲,乙,丙;若乙預(yù)測(cè)正確,則丙預(yù)測(cè)也正確,不符合題意;若丙預(yù)測(cè)正確,則甲必預(yù)測(cè)錯(cuò)誤,丙比乙的成績(jī)高,乙比甲成績(jī)高,即丙比甲,乙成績(jī)都高,即乙預(yù)測(cè)正確,不符合題意,故選A.【點(diǎn)睛】本題將數(shù)學(xué)知識(shí)與時(shí)政結(jié)合,主要考查推理判斷能力.題目有一定難度,注重了基礎(chǔ)知識(shí)、邏輯推理能力的考查.2、D【解析】分析:根據(jù)等比數(shù)列的定義可知每一個(gè)單音的頻率成等比數(shù)列,利用等比數(shù)列的相關(guān)性質(zhì)可解.詳解:因?yàn)槊恳粋€(gè)單音與前一個(gè)單音頻率比為,所以,又,則故選D.點(diǎn)睛:此題考查等比數(shù)列的實(shí)際應(yīng)用,解決本題的關(guān)鍵是能夠判斷單音成等比數(shù)列.等比數(shù)列的判斷方法主要有如下兩種:(1)定義法,若()或(),數(shù)列是等比數(shù)列;(2)等比中項(xiàng)公式法,若數(shù)列中,且(),則數(shù)列是等比數(shù)列.3、D【解析】
依題意,設(shè),由,得,再一一驗(yàn)證.【詳解】設(shè),因?yàn)?,所以,?jīng)驗(yàn)證不滿足,故選:D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的概念、復(fù)數(shù)的幾何意義,還考查了推理論證能力,屬于基礎(chǔ)題.4、D【解析】因?yàn)?,故函?shù)是奇函數(shù),所以排除A,B;取,則,故選D.考點(diǎn):1.函數(shù)的基本性質(zhì);2.函數(shù)的圖象.5、B【解析】
由函數(shù)為奇函數(shù),則有,代入已知即可求得.【詳解】.故選:.【點(diǎn)睛】本題考查奇偶性在抽象函數(shù)中的應(yīng)用,考查學(xué)生分析問(wèn)題的能力,難度較易.6、B【解析】
由題意得出的值,進(jìn)而利用離心率公式可求得該雙曲線的離心率.【詳解】雙曲線的漸近線方程為,由題意可得,因此,該雙曲線的離心率為.故選:B.【點(diǎn)睛】本題考查利用雙曲線的漸近線方程求雙曲線的離心率,利用公式計(jì)算較為方便,考查計(jì)算能力,屬于基礎(chǔ)題.7、C【解析】
根據(jù)函數(shù)奇偶性的性質(zhì)即可得到結(jié)論.【詳解】解:是奇函數(shù),是偶函數(shù),,,,故函數(shù)是奇函數(shù),故錯(cuò)誤,為偶函數(shù),故錯(cuò)誤,是奇函數(shù),故正確.為偶函數(shù),故錯(cuò)誤,故選:.【點(diǎn)睛】本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關(guān)鍵.8、A【解析】
,從而可得,,再解不等式即可.【詳解】由已知,,所以,,由,解得,.故選:A.【點(diǎn)睛】本題考查求正弦型函數(shù)的單調(diào)區(qū)間,涉及到恒成立問(wèn)題,考查學(xué)生轉(zhuǎn)化與化歸的思想,是一道中檔題.9、A【解析】
對(duì)數(shù)字分類討論,結(jié)合數(shù)字中有且僅有兩個(gè)數(shù)字相鄰,利用分類計(jì)數(shù)原理,即可得到結(jié)論【詳解】數(shù)字出現(xiàn)在第位時(shí),數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個(gè)數(shù)字出現(xiàn)在第位時(shí),同理也有個(gè)數(shù)字出現(xiàn)在第位時(shí),數(shù)字中相鄰的數(shù)字出現(xiàn)在第位或者位,共有個(gè)故滿足條件的不同的五位數(shù)的個(gè)數(shù)是個(gè)故選【點(diǎn)睛】本題主要考查了排列,組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題,解題的關(guān)鍵是對(duì)數(shù)字分類討論,屬于基礎(chǔ)題。10、C【解析】
利用線線、線面、面面相應(yīng)的判定與性質(zhì)來(lái)解決.【詳解】如果兩條平行線中一條垂直于這個(gè)平面,那么另一條也垂直于這個(gè)平面知①正確;當(dāng)直線平行于平面與平面的交線時(shí)也有,,故②錯(cuò)誤;若,則垂直平面內(nèi)以及與平面平行的所有直線,故③正確;若,則存在直線且,因?yàn)?,所以,從而,故④正確.故選:C.【點(diǎn)睛】本題考查空間中線線、線面、面面的位置關(guān)系,里面涉及到了相應(yīng)的判定定理以及性質(zhì)定理,是一道基礎(chǔ)題.11、C【解析】
由三視圖知,該幾何體是一個(gè)圓錐,其母線長(zhǎng)是5,底面直徑是6,據(jù)此可計(jì)算出答案.【詳解】由三視圖知,該幾何體是一個(gè)圓錐,其母線長(zhǎng)是5,底面直徑是6,該幾何體的表面積.故選:C【點(diǎn)睛】本題主要考查了三視圖的知識(shí),幾何體的表面積的計(jì)算.由三視圖正確恢復(fù)幾何體是解題的關(guān)鍵.12、B【解析】
求出函數(shù)的導(dǎo)數(shù),利用切線方程通過(guò)f′(0),求解即可;【詳解】f(x)的定義域?yàn)椋ī?,+∞),因?yàn)閒′(x)a,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù)的幾何意義,切線方程的求法,考查計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)正弦定理得,根據(jù)余弦定理得2PF1?PF2cos∠F1PF23,聯(lián)立方程得到,計(jì)算得到答案.【詳解】∵△PF1F2中,sin∠PF1F2═,sin∠PF1F2═,∴由正弦定理得,①又∵,tan∠PF2F1=﹣2,∴tan∠F1PF2=﹣tan(∠PF2F1+∠PF1F2),可得cos∠F1PF2,△PF1F2中用余弦定理,得2PF1?PF2cos∠F1PF23,②①②聯(lián)解,得,可得,∴雙曲線的,結(jié)合,得離心率.故答案為:.【點(diǎn)睛】本題考查了雙曲線離心率,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.14、【解析】
根據(jù)正弦定理,由可得,由可得,將代入求解即得.【詳解】,,即,,,則,,,,則.故答案為:【點(diǎn)睛】本題考查正弦定理和二倍角的正弦公式,是基礎(chǔ)題.15、1.【解析】試題分析:由題意,可看作五個(gè)位置排列五種事物,第一位置有五種排列方法,不妨假設(shè)排上的是金,則第二步只能從土與水兩者中選一種排放,故有兩種選擇不妨假設(shè)排上的是水,第三步只能排上木,第四步只能排上火,第五步只能排上土,故總的排列方法種數(shù)有5×2×1×1×1=1.考點(diǎn):排列、組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題.點(diǎn)評(píng):本題考查排列排列組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題,解答本題關(guān)鍵是理解題設(shè)中的限制條件及“五行”學(xué)說(shuō)的背景,利用分步原理正確計(jì)數(shù),本題較抽象,計(jì)數(shù)時(shí)要考慮周詳.16、【解析】
首先根據(jù)的取值范圍,求得的取值范圍,由此求得函數(shù)的值域,結(jié)合區(qū)間上的值小于0恒成立列不等式組,解不等式組求得的取值范圍.【詳解】由于,所以,由于區(qū)間上的值小于0恒成立,所以().所以,由于,所以,由于,所以令得.所以的取值范圍是.故答案為:【點(diǎn)睛】本小題主要考查三角函數(shù)值域的求法,考查三角函數(shù)值恒小于零的問(wèn)題的求解,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)2個(gè),證明見解析【解析】
(1)要恒成立,只要的最小值大于或等于零即可,所以只要討論求解看是否有最小值;(2)將圖像與圖像的交點(diǎn)個(gè)數(shù)轉(zhuǎn)化為方程實(shí)數(shù)解的個(gè)數(shù)問(wèn)題,然后構(gòu)造函數(shù),再利用導(dǎo)數(shù)討論此函數(shù)零點(diǎn)的個(gè)數(shù).【詳解】(1)的定義域?yàn)椋驗(yàn)椋?°當(dāng)時(shí),在上單調(diào)遞減,時(shí),使得,與條件矛盾;2°當(dāng)時(shí),由,得;由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,即有,由恒成立,所以恒成立,令,若;若;而時(shí),,要使恒成立,故.(2)原問(wèn)題轉(zhuǎn)化為方程實(shí)根個(gè)數(shù)問(wèn)題,當(dāng)時(shí),圖象與圖象有且僅有2個(gè)交點(diǎn),理由如下:由,即,令,因?yàn)椋允堑囊桓?;?°當(dāng)時(shí),,所以在上單調(diào)遞減,,即在上無(wú)實(shí)根;2°當(dāng)時(shí),,則在上單調(diào)遞遞增,又,所以在上有唯一實(shí)根,且滿足,①當(dāng)時(shí),在上單調(diào)遞減,此時(shí)在上無(wú)實(shí)根;②當(dāng)時(shí),在上單調(diào)遞增,,故在上有唯一實(shí)根.3°當(dāng)時(shí),由(1)知,在上單調(diào)遞增,所以,故,所以在上無(wú)實(shí)根.綜合1°,2°,3°,故有兩個(gè)實(shí)根,即圖象與圖象有且僅有2個(gè)交點(diǎn).【點(diǎn)睛】此題考查不等式恒成立問(wèn)題、函數(shù)與方程的轉(zhuǎn)化思想,考查導(dǎo)數(shù)的運(yùn)用,屬于較難題.18、(1)見證明;(2)【解析】
(1)利用導(dǎo)數(shù)說(shuō)明函數(shù)的單調(diào)性,進(jìn)而求得函數(shù)的最小值,得到要證明的結(jié)論;(2)問(wèn)題轉(zhuǎn)化為導(dǎo)函數(shù)在區(qū)間上有解,法一:對(duì)a分類討論,分別研究a的不同取值下,導(dǎo)函數(shù)的單調(diào)性及值域,從而得到結(jié)論.法二:構(gòu)造函數(shù),利用函數(shù)的導(dǎo)數(shù)判斷函數(shù)的單調(diào)性求得函數(shù)的值域,再利用零點(diǎn)存在定理說(shuō)明函數(shù)存在極值.【詳解】(1)當(dāng)時(shí),,于是,.又因?yàn)椋?dāng)時(shí),且.故當(dāng)時(shí),,即.所以,函數(shù)為上的增函數(shù),于是,.因此,對(duì),;(2)方法一:由題意在上存在極值,則在上存在零點(diǎn),①當(dāng)時(shí),為上的增函數(shù),注意到,,所以,存在唯一實(shí)數(shù),使得成立.于是,當(dāng)時(shí),,為上的減函數(shù);當(dāng)時(shí),,為上的增函數(shù);所以為函數(shù)的極小值點(diǎn);②當(dāng)時(shí),在上成立,所以在上單調(diào)遞增,所以在上沒(méi)有極值;③當(dāng)時(shí),在上成立,所以在上單調(diào)遞減,所以在上沒(méi)有極值,綜上所述,使在上存在極值的的取值范圍是.方法二:由題意,函數(shù)在上存在極值,則在上存在零點(diǎn).即在上存在零點(diǎn).設(shè),,則由單調(diào)性的性質(zhì)可得為上的減函數(shù).即的值域?yàn)?,所以,?dāng)實(shí)數(shù)時(shí),在上存在零點(diǎn).下面證明,當(dāng)時(shí),函數(shù)在上存在極值.事實(shí)上,當(dāng)時(shí),為上的增函數(shù),注意到,,所以,存在唯一實(shí)數(shù),使得成立.于是,當(dāng)時(shí),,為上的減函數(shù);當(dāng)時(shí),,為上的增函數(shù);即為函數(shù)的極小值點(diǎn).綜上所述,當(dāng)時(shí),函數(shù)在上存在極值.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的最值,涉及函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,函數(shù)的最值的求法,考查構(gòu)造法的應(yīng)用,是一道綜合題.19、A=【解析】
運(yùn)用矩陣定義列出方程組求解矩陣A【詳解】由特征值、特征向量定義可知,Aα即abc同理可得3a+2b=12,3c+2d=8.解得a=2,b=3,c=2,d=1.因此矩陣【點(diǎn)睛】本題考查了由矩陣特征值和特征向量求矩陣,只需運(yùn)用定義得出方程組即可求出結(jié)果,較為簡(jiǎn)單20、(Ⅰ)萬(wàn);(Ⅱ)分布列見解析,;(Ⅲ)【解析】
(Ⅰ)根據(jù)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 離校勞動(dòng)合同范例
- 擺攤合伙合同范例
- 簡(jiǎn)易廠房轉(zhuǎn)讓合同范例
- 施工合同范例2002
- 銅陵學(xué)院《合成生物學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 同濟(jì)大學(xué)浙江學(xué)院《物理化學(xué)B(Ⅱ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)數(shù)學(xué)第九冊(cè)《分?jǐn)?shù)的基本性質(zhì)》說(shuō)課稿
- 鐵門關(guān)職業(yè)技術(shù)學(xué)院《財(cái)政學(xué)概論》2023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)數(shù)學(xué)二年級(jí)第二學(xué)期口算計(jì)算共5101道題
- 天門職業(yè)學(xué)院《教學(xué)媒體理論與實(shí)踐》2023-2024學(xué)年第一學(xué)期期末試卷
- 市政工程人行道維修方案
- 2021離婚協(xié)議書電子版免費(fèi)
- 《班主任工作常規(guī)》課件
- 初中英語(yǔ)期末考試方法與技巧課件
- 四年級(jí)上冊(cè)綜合實(shí)踐試題-第一學(xué)期實(shí)踐考查卷 粵教版 含答案
- 油煙管道清洗服務(wù)承諾書
- 卷積神經(jīng)網(wǎng)絡(luò)講義課件
- 山東師范大學(xué)《英語(yǔ)語(yǔ)言學(xué)》期末復(fù)習(xí)題
- 考研快題系列一(城市濱水廣場(chǎng)綠地設(shè)計(jì))
- HTML5CSS3 教案及教學(xué)設(shè)計(jì)合并
- 青島版六三二年級(jí)上冊(cè)數(shù)學(xué)乘加乘減解決問(wèn)題1課件
評(píng)論
0/150
提交評(píng)論