2022-2023學(xué)年江蘇省興化市顧莊區(qū)四校中考猜題數(shù)學(xué)試卷含解析_第1頁
2022-2023學(xué)年江蘇省興化市顧莊區(qū)四校中考猜題數(shù)學(xué)試卷含解析_第2頁
2022-2023學(xué)年江蘇省興化市顧莊區(qū)四校中考猜題數(shù)學(xué)試卷含解析_第3頁
2022-2023學(xué)年江蘇省興化市顧莊區(qū)四校中考猜題數(shù)學(xué)試卷含解析_第4頁
2022-2023學(xué)年江蘇省興化市顧莊區(qū)四校中考猜題數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.計算(x-l)(x-2)的結(jié)果為()A.x2+2 B.x2-3x+2 C.x2-3x-3 D.x2-2x+22.用加減法解方程組時,若要求消去,則應(yīng)()A. B. C. D.3.實(shí)數(shù)的倒數(shù)是()A. B. C. D.4.如圖,已知Rt△ABC中,∠BAC=90°,將△ABC繞點(diǎn)A順時針旋轉(zhuǎn),使點(diǎn)D落在射線CA上,DE的延長線交BC于F,則∠CFD的度數(shù)為()A.80° B.90° C.100° D.120°5.下列性質(zhì)中菱形不一定具有的性質(zhì)是()A.對角線互相平分 B.對角線互相垂直C.對角線相等 D.既是軸對稱圖形又是中心對稱圖形6.如圖,等邊△ABC的邊長為4,點(diǎn)D,E分別是BC,AC的中點(diǎn),動點(diǎn)M從點(diǎn)A向點(diǎn)B勻速運(yùn)動,同時動點(diǎn)N沿B﹣D﹣E勻速運(yùn)動,點(diǎn)M,N同時出發(fā)且運(yùn)動速度相同,點(diǎn)M到點(diǎn)B時兩點(diǎn)同時停止運(yùn)動,設(shè)點(diǎn)M走過的路程為x,△AMN的面積為y,能大致刻畫y與x的函數(shù)關(guān)系的圖象是()A. B.C. D.7.如圖,在矩形ABCD中,P、R分別是BC和DC上的點(diǎn),E、F分別是AP和RP的中點(diǎn),當(dāng)點(diǎn)P在BC上從點(diǎn)B向點(diǎn)C移動,而點(diǎn)R不動時,下列結(jié)論正確的是()A.線段EF的長逐漸增長 B.線段EF的長逐漸減小C.線段EF的長始終不變 D.線段EF的長與點(diǎn)P的位置有關(guān)8.有一個數(shù)用科學(xué)記數(shù)法表示為5.2×105,則這個數(shù)是()A.520000 B. C.52000 D.52000009.已知一組數(shù)據(jù)a,b,c的平均數(shù)為5,方差為4,那么數(shù)據(jù)a﹣2,b﹣2,c﹣2的平均數(shù)和方差分別是.()A.3,2 B.3,4 C.5,2 D.5,410.某校八年級兩個班,各選派10名學(xué)生參加學(xué)校舉行的“古詩詞”大賽,各參賽選手成績的數(shù)據(jù)分析如表所示,則以下判斷錯誤的是()班級平均數(shù)中位數(shù)眾數(shù)方差八(1)班94939412八(2)班9595.5938.4A.八(2)班的總分高于八(1)班B.八(2)班的成績比八(1)班穩(wěn)定C.兩個班的最高分在八(2)班D.八(2)班的成績集中在中上游二、填空題(共7小題,每小題3分,滿分21分)11.已知,在同一平面內(nèi),∠ABC=50°,AD∥BC,∠BAD的平分線交直線BC于點(diǎn)E,那么∠AEB的度數(shù)為__________.12.某校園學(xué)子餐廳把WIFI密碼做成了數(shù)學(xué)題,小亮在餐廳就餐時,思索了一會,輸入密碼,順利地連接到了學(xué)子餐廳的網(wǎng)絡(luò),那么他輸入的密碼是______.13.化簡:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=________.14.已知二次函數(shù)y=ax2+bx+c(a≠0)中,函數(shù)值y與自變量x的部分對應(yīng)值如下表:x…-5-4-3-2-1…y…3-2-5-6-5…則關(guān)于x的一元二次方程ax2+bx+c=-2的根是______.15.反比例函數(shù)y=與正比例函數(shù)y=k2x的圖象的一個交點(diǎn)為(2,m),則=____.16.某社區(qū)有一塊空地需要綠化,某綠化組承擔(dān)了此項(xiàng)任務(wù),綠化組工作一段時間后,提高了工作效率.該綠化組完成的綠化面積S(單位:m1)與工作時間t(單位:h)之間的函數(shù)關(guān)系如圖所示,則該綠化組提高工作效率前每小時完成的綠化面積是_____m1.17.如圖,在每個小正方形的邊長為1的網(wǎng)格中,A,B為格點(diǎn)(Ⅰ)AB的長等于__(Ⅱ)請用無刻度的直尺,在如圖所示的網(wǎng)格中求作一點(diǎn)C,使得CA=CB且△ABC的面積等于,并簡要說明點(diǎn)C的位置是如何找到的__________________三、解答題(共7小題,滿分69分)18.(10分)如圖,拋物線經(jīng)過點(diǎn)A(﹣2,0),點(diǎn)B(0,4).(1)求這條拋物線的表達(dá)式;(2)P是拋物線對稱軸上的點(diǎn),聯(lián)結(jié)AB、PB,如果∠PBO=∠BAO,求點(diǎn)P的坐標(biāo);(3)將拋物線沿y軸向下平移m個單位,所得新拋物線與y軸交于點(diǎn)D,過點(diǎn)D作DE∥x軸交新拋物線于點(diǎn)E,射線EO交新拋物線于點(diǎn)F,如果EO=2OF,求m的值.19.(5分)如圖,四邊形ABCD的四個頂點(diǎn)分別在反比例函數(shù)y=mx與y=n(1)當(dāng)m=1,n=20時.①若點(diǎn)P的縱坐標(biāo)為2,求直線AB的函數(shù)表達(dá)式.②若點(diǎn)P是BD的中點(diǎn),試判斷四邊形ABCD的形狀,并說明理由.(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關(guān)系;若不能,試說明理由.20.(8分)如圖1,定義:在直角三角形ABC中,銳角α的鄰邊與對邊的比叫做角α的余切,記作ctanα,即ctanα=角α的鄰邊角(1)如圖1,若BC=3,AB=5,則ctanB=_____;(2)ctan60°=_____;(3)如圖2,已知:△ABC中,∠B是銳角,ctanC=2,AB=10,BC=20,試求∠B的余弦cosB的值.21.(10分)(1)如圖,四邊形為正方形,,那么與相等嗎?為什么?(2)如圖,在中,,,為邊的中點(diǎn),于點(diǎn),交于,求的值(3)如圖,中,,為邊的中點(diǎn),于點(diǎn),交于,若,,求.22.(10分)一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍(lán)球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為.求口袋中黃球的個數(shù);甲同學(xué)先隨機(jī)摸出一個小球(不放回),再隨機(jī)摸出一個小球,請用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;23.(12分)如圖,沿AC方向開山修路.為了加快施工進(jìn)度,要在小山的另一邊同時施工,從AC上的一點(diǎn)B取∠ABD=120°,BD=520m,∠D=30°.那么另一邊開挖點(diǎn)E離D多遠(yuǎn)正好使A,C,E三點(diǎn)在一直線上(取1.732,結(jié)果取整數(shù))?24.(14分)如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時針方向旋轉(zhuǎn)得到的,連接BE,CF相交于點(diǎn)D.求證:BE=CF;當(dāng)四邊形ACDE為菱形時,求BD的長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據(jù)多項(xiàng)式的乘法法則計算即可.【詳解】(x-l)(x-2)=x2-2x-x+2=x2-3x+2.故選B.【點(diǎn)睛】本題考查了多項(xiàng)式與多項(xiàng)式的乘法運(yùn)算,多項(xiàng)式與多項(xiàng)式相乘,先用一個多項(xiàng)式的每一項(xiàng)分別乘另一個多項(xiàng)式的每一項(xiàng),再把所得的積相加.2、C【解析】

利用加減消元法消去y即可.【詳解】用加減法解方程組時,若要求消去y,則應(yīng)①×5+②×3,

故選C【點(diǎn)睛】此題考查了解二元一次方程組,利用了消元的思想,消元的方法有:代入消元法與加減消元法.3、D【解析】因?yàn)椋?,所以的倒?shù)是.故選D.4、B【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根據(jù)三角形外角性質(zhì)得出∠CFD=∠B+∠BEF,代入求出即可.【詳解】解:∵將△ABC繞點(diǎn)A順時針旋轉(zhuǎn)得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故選:B.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的性質(zhì)和判定,三角形內(nèi)角和定理,三角形外角性質(zhì)的應(yīng)用,掌握旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.5、C【解析】

根據(jù)菱形的性質(zhì):①菱形具有平行四邊形的一切性質(zhì);②菱形的四條邊都相等;③菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角;④菱形是軸對稱圖形,它有2條對稱軸,分別是兩條對角線所在直線.【詳解】解:A、菱形的對角線互相平分,此選項(xiàng)正確;B、菱形的對角線互相垂直,此選項(xiàng)正確;C、菱形的對角線不一定相等,此選項(xiàng)錯誤;D、菱形既是軸對稱圖形又是中心對稱圖形,此選項(xiàng)正確;故選C.考點(diǎn):菱形的性質(zhì)6、A【解析】

根據(jù)題意,將運(yùn)動過程分成兩段.分段討論求出解析式即可.【詳解】∵BD=2,∠B=60°,∴點(diǎn)D到AB距離為,當(dāng)0≤x≤2時,y=;當(dāng)2≤x≤4時,y=.根據(jù)函數(shù)解析式,A符合條件.故選A.【點(diǎn)睛】本題為動點(diǎn)問題的函數(shù)圖象,解答關(guān)鍵是找到動點(diǎn)到達(dá)臨界點(diǎn)前后的一般圖形,分類討論,求出函數(shù)關(guān)系式.7、C【解析】試題分析:連接AR,根據(jù)勾股定理得出AR=的長不變,根據(jù)三角形的中位線定理得出EF=AR,即可得出線段EF的長始終不變,故選C.考點(diǎn):1、矩形性質(zhì),2、勾股定理,3、三角形的中位線8、A【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>10時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】5.2×105=520000,故選A.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.9、B【解析】試題分析:平均數(shù)為(a?2+b?2+c?2)=(3×5-6)=3;原來的方差:;新的方差:,故選B.考點(diǎn):平均數(shù);方差.10、C【解析】

直接利用表格中數(shù)據(jù),結(jié)合方差的定義以及算術(shù)平均數(shù)、中位數(shù)、眾數(shù)得出答案.【詳解】A選項(xiàng):八(2)班的平均分高于八(1)班且人數(shù)相同,所以八(2)班的總分高于八(1)班,正確;

B選項(xiàng):八(2)班的方差比八(1)班小,所以八(2)班的成績比八(1)班穩(wěn)定,正確;

C選項(xiàng):兩個班的最高分無法判斷出現(xiàn)在哪個班,錯誤;

D選項(xiàng):八(2)班的中位數(shù)高于八(1)班,所以八(2)班的成績集中在中上游,正確;

故選C.【點(diǎn)睛】考查了方差的定義以及算術(shù)平均數(shù)、中位數(shù)、眾數(shù),利用表格獲取正確的信息是解題關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、65°或25°【解析】

首先根據(jù)角平分線的定義得出∠EAD=∠EAB,再分情況討論計算即可.【詳解】解:分情況討論:(1)∵AE平分∠BAD,

∴∠EAD=∠EAB,

∵AD∥BC,

∴∠EAD=∠AEB,

∴∠BAD=∠AEB,

∵∠ABC=50°,

∴∠AEB=?(180°-50°)=65°.(2)∵AE平分∠BAD,

∴∠EAD=∠EAB=,

∵AD∥BC,

∴∠AEB=∠DAE=,∠DAB=∠ABC,

∵∠ABC=50°,

∴∠AEB=×50°=25°.

故答案為:65°或25°.【點(diǎn)睛】本題考查平行線的性質(zhì)、角平分線的定義等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考??碱}型.12、143549【解析】

根據(jù)題中密碼規(guī)律確定所求即可.【詳解】532=5×3×10000+5×2×100+5×(2+3)=151025924=9×2×10000+9×4×100+9×(2+4)=183654,863=8×6×10000+8×3×100+8×(3+6)=482472,∴725=7×2×10000+7×5×100+7×(2+5)=143549.故答案為:143549【點(diǎn)睛】本題考查有理數(shù)的混合運(yùn)算,根據(jù)題意得出規(guī)律并熟練掌握運(yùn)算法則是解題關(guān)鍵.13、(a+1)1.【解析】

原式提取公因式,計算即可得到結(jié)果.【詳解】原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98],

=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97],

=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96],

=…,

=(a+1)1.

故答案是:(a+1)1.【點(diǎn)睛】考查了因式分解-提公因式法,熟練掌握提取公因式的方法是解本題的關(guān)鍵.14、x1=-4,x1=2【解析】解:∵x=﹣3,x=﹣1的函數(shù)值都是﹣5,相等,∴二次函數(shù)的對稱軸為直線x=﹣1.∵x=﹣4時,y=﹣1,∴x=2時,y=﹣1,∴方程ax1+bx+c=3的解是x1=﹣4,x1=2.故答案為x1=﹣4,x1=2.點(diǎn)睛:本題考查了二次函數(shù)的性質(zhì),主要利用了二次函數(shù)的對稱性,讀懂圖表信息,求出對稱軸解析式是解題的關(guān)鍵.15、4【解析】

利用交點(diǎn)(2,m)同時滿足在正比例函數(shù)和反比例函數(shù)上,分別得出m和、的關(guān)系.【詳解】把點(diǎn)(2,m)代入反比例函數(shù)和正比例函數(shù)中得,,,則.【點(diǎn)睛】本題主要考查了函數(shù)的交點(diǎn)問題和待定系數(shù)法,熟練掌握待定系數(shù)法是本題的解題關(guān)鍵.16、150【解析】設(shè)綠化面積與工作時間的函數(shù)解析式為,因?yàn)楹瘮?shù)圖象經(jīng)過,兩點(diǎn),將兩點(diǎn)坐標(biāo)代入函數(shù)解析式得得,將其代入得,解得,∴一次函數(shù)解析式為,將代入得,故提高工作效率前每小時完成的綠化面積為.17、取格點(diǎn)P、N(S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點(diǎn)C,點(diǎn)C即為所求.【解析】

(Ⅰ)利用勾股定理計算即可;(Ⅱ)取格點(diǎn)P、N(S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點(diǎn)C,點(diǎn)C即為所求.【詳解】解:(Ⅰ)AB==,故答案為.(Ⅱ)如圖取格點(diǎn)P、N(使得S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點(diǎn)C,點(diǎn)C即為所求.故答案為:取格點(diǎn)P、N(S△PAB=),作直線PN,再證=作線段AB的垂直平分線EF交PN于點(diǎn)C,點(diǎn)C即為所求.【點(diǎn)睛】本題考查作圖﹣應(yīng)用與設(shè)計,線段的垂直平分線的性質(zhì)、等高模型等知識,解題的關(guān)鍵是學(xué)會利用數(shù)形結(jié)合的思想思考問題,屬于中考??碱}型.三、解答題(共7小題,滿分69分)18、(1);(2)P(1,);(3)3或5.【解析】

(1)將點(diǎn)A、B代入拋物線,用待定系數(shù)法求出解析式.(2)對稱軸為直線x=1,過點(diǎn)P作PG⊥y軸,垂足為G,由∠PBO=∠BAO,得tan∠PBO=tan∠BAO,即,可求出P的坐標(biāo).(3)新拋物線的表達(dá)式為,由題意可得DE=2,過點(diǎn)F作FH⊥y軸,垂足為H,∵DE∥FH,EO=2OF,∴,∴FH=1.然后分情況討論點(diǎn)D在y軸的正半軸上和在y軸的負(fù)半軸上,可求得m的值為3或5.【詳解】解:(1)∵拋物線經(jīng)過點(diǎn)A(﹣2,0),點(diǎn)B(0,4)∴,解得,∴拋物線解析式為,(2),∴對稱軸為直線x=1,過點(diǎn)P作PG⊥y軸,垂足為G,∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,∴,∴,∴,,∴P(1,),(3)設(shè)新拋物線的表達(dá)式為則,,DE=2過點(diǎn)F作FH⊥y軸,垂足為H,∵DE∥FH,EO=2OF∴,∴FH=1.點(diǎn)D在y軸的正半軸上,則,∴,∴,∴m=3,點(diǎn)D在y軸的負(fù)半軸上,則,∴,∴,∴m=5,∴綜上所述m的值為3或5.【點(diǎn)睛】本題是二次函數(shù)和相似三角形的綜合題目,整體難度不大,但是非常巧妙,學(xué)會靈活運(yùn)用是關(guān)鍵.19、(1)①直線AB的解析式為y=﹣12【解析】分析:(1)①先確定出點(diǎn)A,B坐標(biāo),再利用待定系數(shù)法即可得出結(jié)論;②先確定出點(diǎn)D坐標(biāo),進(jìn)而確定出點(diǎn)P坐標(biāo),進(jìn)而求出PA,PC,即可得出結(jié)論;(2)先確定出B(1,m4),進(jìn)而得出A(1-t,m4+t),即:(1-t)(m4詳解:(1)①如圖1,∵m=1,∴反比例函數(shù)為y=4x∴B(1,1),當(dāng)y=2時,∴2=4x∴x=2,∴A(2,2),設(shè)直線AB的解析式為y=kx+b,∴2k+b=∴k=∴直線AB的解析式為y=-12②四邊形ABCD是菱形,理由如下:如圖2,由①知,B(1,1),∵BD∥y軸,∴D(1,5),∵點(diǎn)P是線段BD的中點(diǎn),∴P(1,3),當(dāng)y=3時,由y=4x得,x=4由y=20x得,x=20∴PA=1-43=83,PC=203∴PA=PC,∵PB=PD,∴四邊形ABCD為平行四邊形,∵BD⊥AC,∴四邊形ABCD是菱形;(2)四邊形ABCD能是正方形,理由:當(dāng)四邊形ABCD是正方形,∴PA=PB=PC=PD,(設(shè)為t,t≠0),當(dāng)x=1時,y=mx=m∴B(1,m4∴A(1-t,m4∴(1-t)(m4∴t=1-m4∴點(diǎn)D的縱坐標(biāo)為m4+2t=m4+2(1-m4∴D(1,8-m4∴1(8-m4∴m+n=2.點(diǎn)睛:此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,平行四邊形的判定,菱形的判定和性質(zhì),正方形的性質(zhì),判斷出四邊形ABCD是平行四邊形是解本題的關(guān)鍵.20、(1);(2);(3).【解析】試題分析:(1)先利用勾股定理計算出AC=4,然后根據(jù)余切的定義求解;(2)根據(jù)余切的定義得到ctan60°=,然后把tan60°=代入計算即可;(3)作AH⊥BC于H,如圖2,先在Rt△ACH中利用余切的定義得到ctanC==2,則可設(shè)AH=x,CH=2x,BH=BC﹣CH=20﹣2x,接著再在Rt△ABH中利用勾股定理得到(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),所以BH=8,然后根據(jù)余弦的定義求解.解:(1)∵BC=3,AB=5,∴AC==4,∴ctanB==;(2)ctan60°===;(3)作AH⊥BC于H,如圖2,在Rt△ACH中,ctanC==2,設(shè)AH=x,則CH=2x,∴BH=BC﹣CH=20﹣2x,在Rt△ABH中,∵BH2+AH2=AB2,∴(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),∴BH=20﹣2×6=8,∴cosB===.考點(diǎn):解直角三角形.21、(1)相等,理由見解析;(2)2;(3).【解析】

(1)先判斷出AB=AD,再利用同角的余角相等,判斷出∠ABF=∠DAE,進(jìn)而得出△ABF≌△DAE,即可得出結(jié)論;

(2)構(gòu)造出正方形,同(1)的方法得出△ABD≌△CBG,進(jìn)而得出CG=AB,再判斷出△AFB∽△CFG,即可得出結(jié)論;

(3)先構(gòu)造出矩形,同(1)的方法得,∠BAD=∠CBP,進(jìn)而判斷出△ABD∽△BCP,即可求出CP,再同(2)的方法判斷出△CFP∽△AFB,建立方程即可得出結(jié)論.【詳解】解:(1)BF=AE,理由:

∵四邊形ABCD是正方形,

∴AB=AD,∠BAD=∠D=90°,

∴∠BAE+∠DAE=90°,

∵AE⊥BF,

∴∠BAE+∠ABF=90°,

∴∠ABF=∠DAE,

在△ABF和△DAE中,∴△ABF≌△DAE,

∴BF=AE,(2)如圖2,

過點(diǎn)A作AM∥BC,過點(diǎn)C作CM∥AB,兩線相交于M,延長BF交CM于G,

∴四邊形ABCM是平行四邊形,

∵∠ABC=90°,

∴?ABCM是矩形,

∵AB=BC,

∴矩形ABCM是正方形,

∴AB=BC=CM,

同(1)的方法得,△ABD≌△BCG,

∴CG=BD,

∵點(diǎn)D是BC中點(diǎn),

∴BD=BC=CM,

∴CG=CM=AB,

∵AB∥CM,

∴△AFB∽△CFG,∴(3)如圖3,在Rt△ABC中,AB=3,BC=4,

∴AC=5,

∵點(diǎn)D是BC中點(diǎn),

∴BD=BC=2,

過點(diǎn)A作AN∥BC,過點(diǎn)C作CN∥AB,兩線相交于N,延長BF交CN于P,

∴四邊形ABCN是平行四邊形,

∵∠ABC=90°,∴?ABCN是矩形,

同(1)的方法得,∠BAD=∠CBP,

∵∠ABD=∠BCP=90°,

∴△ABD∽△BCP,∴∴∴CP=同(2)的方法,△CFP∽△AFB,∴∴∴CF=.【點(diǎn)睛】本題是四邊形綜合題,主要考查了正方形的性質(zhì)和判定,平行四邊形的判定,矩形的判定和性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),構(gòu)造出(1)題的圖形,是解本題的關(guān)鍵.22、(1)1;(2)【解析】

(1)設(shè)口袋中黃球的個數(shù)為x個,根據(jù)從中任意摸出一個球是紅球的概率為和概率公式列出方程,解方程即可求得答案;(2)根據(jù)題意畫出樹

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論