版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省武陟一中西區(qū)重點中學2022-2023學年第二學期高三年級統(tǒng)練四數(shù)學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設全集為R,集合,,則A. B. C. D.2.設集合(為實數(shù)集),,,則()A. B. C. D.3.一個袋中放有大小、形狀均相同的小球,其中紅球1個、黑球2個,現(xiàn)隨機等可能取出小球,當有放回依次取出兩個小球時,記取出的紅球數(shù)為;當無放回依次取出兩個小球時,記取出的紅球數(shù)為,則()A., B.,C., D.,4.水平放置的,用斜二測畫法作出的直觀圖是如圖所示的,其中,則繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體的表面積為()A. B. C. D.5.已知全集,集合,則()A. B. C. D.6.集合的真子集的個數(shù)是()A. B. C. D.7.若(),,則()A.0或2 B.0 C.1或2 D.18.已知三棱錐的所有頂點都在球的球面上,平面,,若球的表面積為,則三棱錐的體積的最大值為()A. B. C. D.9.已知集合U={1,2,3,4,5,6},A={2,4},B={3,4},則=()A.{3,5,6} B.{1,5,6} C.{2,3,4} D.{1,2,3,5,6}10.已知集合,則()A. B.C. D.11.已知直線:()與拋物線:交于(坐標原點),兩點,直線:與拋物線交于,兩點.若,則實數(shù)的值為()A. B. C. D.12.二項式展開式中,項的系數(shù)為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線,點為拋物線上一動點,過點作圓的切線,切點分別為,則線段長度的取值范圍為__________.14.某次足球比賽中,,,,四支球隊進入了半決賽.半決賽中,對陣,對陣,獲勝的兩隊進入決賽爭奪冠軍,失利的兩隊爭奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—則隊獲得冠軍的概率為______.15.已知復數(shù),其中是虛數(shù)單位.若的實部與虛部相等,則實數(shù)的值為__________.16.設函數(shù),若在上的最大值為,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,將曲線(為參數(shù))通過伸縮變換,得到曲線,設直線(為參數(shù))與曲線相交于不同兩點,.(1)若,求線段的中點的坐標;(2)設點,若,求直線的斜率.18.(12分)已知點為圓:上的動點,為坐標原點,過作直線的垂線(當、重合時,直線約定為軸),垂足為,以為極點,軸的正半軸為極軸建立極坐標系.(1)求點的軌跡的極坐標方程;(2)直線的極坐標方程為,連接并延長交于,求的最大值.19.(12分)設函數(shù),,.(1)求函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個零點,().(i)求的取值范圍;(ii)求證:隨著的增大而增大.20.(12分)已知函數(shù)(1)若函數(shù)有且只有一個零點,求實數(shù)的取值范圍;(2)若函數(shù)對恒成立,求實數(shù)的取值范圍.21.(12分)設數(shù)列是等差數(shù)列,其前項和為,且,.(1)求數(shù)列的通項公式;(2)證明:.22.(10分)已知命題:,;命題:函數(shù)無零點.(1)若為假,求實數(shù)的取值范圍;(2)若為假,為真,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】分析:由題意首先求得,然后進行交集運算即可求得最終結(jié)果.詳解:由題意可得:,結(jié)合交集的定義可得:.本題選擇B選項.點睛:本題主要考查交集的運算法則,補集的運算法則等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.2、A【解析】
根據(jù)集合交集與補集運算,即可求得.【詳解】集合,,所以所以故選:A【點睛】本題考查了集合交集與補集的混合運算,屬于基礎題.3、B【解析】
分別求出兩個隨機變量的分布列后求出它們的期望和方差可得它們的大小關(guān)系.【詳解】可能的取值為;可能的取值為,,,,故,.,,故,,故,.故選B.【點睛】離散型隨機變量的分布列的計算,應先確定隨機變量所有可能的取值,再利用排列組合知識求出隨機變量每一種取值情況的概率,然后利用公式計算期望和方差,注意在取球模型中摸出的球有放回與無放回的區(qū)別.4、B【解析】
根據(jù)斜二測畫法的基本原理,將平面直觀圖還原為原幾何圖形,可得,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,圓錐的側(cè)面展開圖是扇形根據(jù)扇形面積公式即可求得組合體的表面積.【詳解】根據(jù)“斜二測畫法”可得,,,繞AB所在直線旋轉(zhuǎn)一周后形成的幾何體是兩個相同圓錐的組合體,它的表面積為.故選:【點睛】本題考查斜二測畫法的應用及組合體的表面積求法,難度較易.5、D【解析】
根據(jù)函數(shù)定義域的求解方法可分別求得集合,由補集和交集定義可求得結(jié)果.【詳解】,,,.故選:.【點睛】本題考查集合運算中的補集和交集運算問題,涉及到函數(shù)定義域的求解,屬于基礎題.6、C【解析】
根據(jù)含有個元素的集合,有個子集,有個真子集,計算可得;【詳解】解:集合含有個元素,則集合的真子集有(個),故選:C【點睛】考查列舉法的定義,集合元素的概念,以及真子集的概念,對于含有個元素的集合,有個子集,有個真子集,屬于基礎題.7、A【解析】
利用復數(shù)的模的運算列方程,解方程求得的值.【詳解】由于(),,所以,解得或.故選:A【點睛】本小題主要考查復數(shù)模的運算,屬于基礎題.8、B【解析】
由題意畫出圖形,設球0得半徑為R,AB=x,AC=y,由球0的表面積為20π,可得R2=5,再求出三角形ABC外接圓的半徑,利用余弦定理及基本不等式求xy的最大值,代入棱錐體積公式得答案.【詳解】設球的半徑為,,,由,得.如圖:設三角形的外心為,連接,,,可得,則.在中,由正弦定理可得:,即,由余弦定理可得,,.則三棱錐的體積的最大值為.故選:.【點睛】本題考查三棱錐的外接球、三棱錐的側(cè)面積、體積,基本不等式等基礎知識,考查空間想象能力、邏輯思維能力、運算求解能力,考查數(shù)學轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,是中檔題.9、B【解析】
按補集、交集定義,即可求解.【詳解】={1,3,5,6},={1,2,5,6},所以={1,5,6}.故選:B.【點睛】本題考查集合間的運算,屬于基礎題.10、C【解析】
由題意和交集的運算直接求出.【詳解】∵集合,∴.故選:C.【點睛】本題考查了集合的交集運算.集合進行交并補運算時,常借助數(shù)軸求解.注意端點處是實心圓還是空心圓.11、D【解析】
設,,聯(lián)立直線與拋物線方程,消去、列出韋達定理,再由直線與拋物線的交點求出點坐標,最后根據(jù),得到方程,即可求出參數(shù)的值;【詳解】解:設,,由,得,∵,解得或,∴,.又由,得,∴或,∴,∵,∴,又∵,∴代入解得.故選:D【點睛】本題考查直線與拋物線的綜合應用,弦長公式的應用,屬于中檔題.12、D【解析】
寫出二項式的通項公式,再分析的系數(shù)求解即可.【詳解】二項式展開式的通項為,令,得,故項的系數(shù)為.故選:D【點睛】本題主要考查了二項式定理的運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
連接,易得,可得四邊形的面積為,從而可得,進而求出的取值范圍,可求得的范圍.【詳解】如圖,連接,易得,所以四邊形的面積為,且四邊形的面積為三角形面積的兩倍,所以,所以,當最小時,最小,設點,則,所以當時,,則,當點的橫坐標時,,此時,因為隨著的增大而增大,所以的取值范圍為.故答案為:.【點睛】本題考查直線與圓的位置關(guān)系的應用,考查拋物線上的動點到定點的距離的求法,考查學生的計算求解能力,屬于中檔題.14、0.18【解析】
根據(jù)表中信息,可得勝C的概率;分類討論B或D進入決賽,再計算A勝B或A勝C的概率即可求解.【詳解】由表中信息可知,勝C的概率為;若B進入決賽,B勝D的概率為,則A勝B的概率為;若D進入決賽,D勝B的概率為,則A勝D的概率為;由相應的概率公式知,則A獲得冠軍的概率為.故答案為:0.18【點睛】本題考查了獨立事件的概率應用,互斥事件的概率求法,屬于基礎題.15、【解析】
直接由復數(shù)代數(shù)形式的乘法運算化簡,結(jié)合已知條件即可求出實數(shù)的值.【詳解】解:的實部與虛部相等,所以,計算得出.故答案為:【點睛】本題考查復數(shù)的乘法運算和復數(shù)的概念,屬于基礎題.16、【解析】
求出函數(shù)的導數(shù),由在上,可得在上單調(diào)遞增,則函數(shù)最大值為,即可求出參數(shù)的值.【詳解】解:定義域為,在上單調(diào)遞增,故在上的最大值為故答案為:【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性與最值,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)由l參數(shù)方程與橢圓方程聯(lián)立可得A、B兩點參數(shù)和,再利用M點的參數(shù)為A、B兩點參數(shù)和的一半即可求M的坐標;(2)利用直線參數(shù)方程的幾何意義得到,再利用計算即可,但要注意判別式還要大于0.【詳解】(1)由已知,曲線的參數(shù)方程為(為參數(shù)),其普通方程為,當時,將(為參數(shù))代入得,設直線l上A、B兩點所對應的參數(shù)為,中點M所對應的參數(shù)為,則,所以的坐標為;(2)將代入得,則,因為即,所以,故,由得,所以.【點睛】本題考查了伸縮變換、參數(shù)方程與普通方程的互化、直線參數(shù)方程的幾何意義等知識,考查學生的計算能力,是一道中檔題.18、(1);(2)【解析】
(1)設的極坐標為,在中,有,即可得結(jié)果;(2)設射線:,,圓的極坐標方程為,聯(lián)立兩個方程,可求出,聯(lián)立可得,則計算可得,利用三角函數(shù)的性質(zhì)可得最值.【詳解】(1)設的極坐標為,在中,有,點的軌跡的極坐標方程為;(2)設射線:,,圓的極坐標方程為,由得:,由得:,,,當,即時,,的最大值為.【點睛】本題考查極坐標方程的應用,考查三角函數(shù)性質(zhì)的應用,是中檔題.19、(1)見解析;(2)(i)(ii)證明見解析【解析】
(1)求出導函數(shù),分類討論即可求解;(2)(i)結(jié)合(1)的單調(diào)性分析函數(shù)有兩個零點求解參數(shù)取值范圍;(ii)設,通過轉(zhuǎn)化,討論函數(shù)的單調(diào)性得證.【詳解】(1)因為,所以當時,在上恒成立,所以在上單調(diào)遞增,當時,的解集為,的解集為,所以的單調(diào)增區(qū)間為,的單調(diào)減區(qū)間為;(2)(i)由(1)可知,當時,在上單調(diào)遞增,至多一個零點,不符題意,當時,因為有兩個零點,所以,解得,因為,且,所以存在,使得,又因為,設,則,所以單調(diào)遞增,所以,即,因為,所以存在,使得,綜上,;(ii)因為,所以,因為,所以,設,則,所以,解得,所以,所以,設,則,設,則,所以單調(diào)遞增,所以,所以,即,所以單調(diào)遞增,即隨著的增大而增大,所以隨著的增大而增大,命題得證.【點睛】此題考查利用導函數(shù)處理函數(shù)的單調(diào)性,根據(jù)函數(shù)的零點個數(shù)求參數(shù)的取值范圍,通過等價轉(zhuǎn)化證明與零點相關(guān)的命題.20、(1);(2).【解析】
(1)求導得到,討論和兩種情況,計算函數(shù)的單調(diào)性,得到,再討論,,三種情況,計算得到答案.(2)計算得到,討論,兩種情況,分別計算單調(diào)性得到函數(shù)最值,得到答案.【詳解】(1),①當時恒成立,所以單調(diào)遞增,因為,所以有唯一零點,即符合題意;②當時,令,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,函數(shù)。(i)當即,所以符合題意,(ii)當即時,因為,故存在,所以不符題意(iii)當時,因為,設,所以,單調(diào)遞增,即,故存在,使得,不符題意;綜上,的取值范圍為。(2)。①當時,恒成立,所以單調(diào)遞增,所以,即符合題意;②當時,恒成立,所以單調(diào)遞增,又因為,所以存在,使得,且當時,。即在上單調(diào)遞減,所以,不符題意。綜上,的取值范圍為.【點睛】本題考查了函數(shù)的零點問題,恒成立問題,意在考查學生的分類討論能力和綜合應用能力.21、(1)(2)見解析【解析】
(1)設數(shù)列的公差為,由,得到,再結(jié)合題干所給數(shù)據(jù)得到公差,即可求得數(shù)列的通項公式;(2)由(1)可得,再利用放縮法證明不等式即可;【詳解】解:(1)設數(shù)列的公差為,∵,∴,∴,∴.(2)∵,∴,∴.【點睛】本題考查等差數(shù)列的通項公式的計算,放縮法證明數(shù)列不等式,屬于中檔題.22、(1)(2)【解析】
(1)為假,則為真,求導,利用導函數(shù)研究函數(shù)有零點條件得的取值范圍;(2)由為假,為真,知一真一
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 項目管理團隊協(xié)作
- 租期將滿:場地管理與維護
- 汽車展廳木地板安裝合同
- 2025航空貨物運輸合同范本
- 個性化定制增值服務承諾書
- 2025公司辦公室沙發(fā)定制合同
- 生物科技公司藥師合同范本
- 社會科學計量變更方法
- 2024年醫(yī)療機構(gòu)與醫(yī)護人員勞動關(guān)系合同范本3篇
- 2025版智能電網(wǎng)設備研發(fā)與推廣合同范本3篇
- 2023-2024學年江西省小學語文六年級期末??伎荚囶}附參考答案和詳細解析
- 2023-2024學年廣西壯族自治區(qū)南寧市小學語文五年級期末高分試題附參考答案和詳細解析
- 山東省菏澤市高職單招2023年綜合素質(zhì)自考測試卷(含答案)
- 中國兒童注意缺陷多動障礙(ADHD)防治指南
- 強力皮帶運行危險點分析及預控措施
- 基于STM32的可遙控智能跟隨小車的設計與實現(xiàn)-設計應用
- DB44T 1315-2014物業(yè)服務 檔案管理規(guī)范
- 基本醫(yī)療保險異地就醫(yī)登記備案申請表
- 非線性光纖光學六偏振效應PPT
- 愛國人物的歷史故事整理
- 天然藥物化學智慧樹知到答案章節(jié)測試2023年中國藥科大學
評論
0/150
提交評論