湖北省普通高中聯考協作體2023屆高三一輪復習:三角函數與解三角形檢測試題_第1頁
湖北省普通高中聯考協作體2023屆高三一輪復習:三角函數與解三角形檢測試題_第2頁
湖北省普通高中聯考協作體2023屆高三一輪復習:三角函數與解三角形檢測試題_第3頁
湖北省普通高中聯考協作體2023屆高三一輪復習:三角函數與解三角形檢測試題_第4頁
湖北省普通高中聯考協作體2023屆高三一輪復習:三角函數與解三角形檢測試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省普通高中聯考協作體2023屆高三一輪復習:三角函數與解三角形檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的右焦點為F,過右頂點A且與x軸垂直的直線交雙曲線的一條漸近線于M點,MF的中點恰好在雙曲線C上,則C的離心率為()A. B. C. D.2.直線與圓的位置關系是()A.相交 B.相切 C.相離 D.相交或相切3.記遞增數列的前項和為.若,,且對中的任意兩項與(),其和,或其積,或其商仍是該數列中的項,則()A. B.C. D.4.已知斜率為k的直線l與拋物線交于A,B兩點,線段AB的中點為,則斜率k的取值范圍是()A. B. C. D.5.已知,其中是虛數單位,則對應的點的坐標為()A. B. C. D.6.設,,則的值為()A. B.C. D.7.過圓外一點引圓的兩條切線,則經過兩切點的直線方程是().A. B. C. D.8.已知拋物線的焦點為,過點的直線與拋物線交于,兩點(設點位于第一象限),過點,分別作拋物線的準線的垂線,垂足分別為點,,拋物線的準線交軸于點,若,則直線的斜率為A.1 B. C. D.9.已知全集,集合,,則()A. B. C. D.10.若實數、滿足,則的最小值是()A. B. C. D.11.如圖,在中,,是上一點,若,則實數的值為()A. B. C. D.12.若,滿足約束條件,則的最大值是()A. B. C.13 D.二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中,的系數為______用數字作答14.已知三棱錐中,,,則該三棱錐的外接球的表面積是________.15.安排名男生和名女生參與完成項工作,每人參與一項,每項工作至少由名男生和名女生完成,則不同的安排方式共有________種(用數字作答).16.已知二項式的展開式中各項的二項式系數和為512,其展開式中第四項的系數__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,直線與拋物線:交于,兩點,且當時,.(1)求的值;(2)設線段的中點為,拋物線在點處的切線與的準線交于點,證明:軸.18.(12分)2019年是五四運動100周年.五四運動以來的100年,是中國青年一代又一代接續(xù)奮斗、凱歌前行的100年,是中口青年用青春之我創(chuàng)造青春之中國、青春之民族的100年.為繼承和發(fā)揚五四精神在青年節(jié)到來之際,學校組織“五四運動100周年”知識競賽,競賽的一個環(huán)節(jié)由10道題目組成,其中6道A類題、4道B類題,參賽者需從10道題目中隨機抽取3道作答,現有甲同學參加該環(huán)節(jié)的比賽.(1)求甲同學至少抽到2道B類題的概率;(2)若甲同學答對每道A類題的概率都是,答對每道B類題的概率都是,且各題答對與否相互獨立.現已知甲同學恰好抽中2道A類題和1道B類題,用X表示甲同學答對題目的個數,求隨機變量X的分布列和數學期望.19.(12分)設,,其中.(1)當時,求的值;(2)對,證明:恒為定值.20.(12分)設直線與拋物線交于兩點,與橢圓交于兩點,設直線(為坐標原點)的斜率分別為,若.(1)證明:直線過定點,并求出該定點的坐標;(2)是否存在常數,滿足?并說明理由.21.(12分)已知數列的前項和為,且滿足.(1)求數列的通項公式;(2)若,,且數列前項和為,求的取值范圍.22.(10分)為響應“堅定文化自信,建設文化強國”,提升全民文化修養(yǎng),引領學生“讀經典用經典”,某廣播電視臺計劃推出一檔“閱讀經典”節(jié)目.工作人員在前期的數據采集中,在某高中學校隨機抽取了120名學生做調查,統計結果顯示:樣本中男女比例為3:2,而男生中喜歡閱讀中國古典文學和不喜歡的比例是7:5,女生中喜歡閱讀中國古典文學和不喜歡的比例是5:3.(1)填寫下面列聯表,并根據聯表判斷是否有的把握認為喜歡閱讀中國古典文學與性別有關系?男生女生總計喜歡閱讀中國古典文學不喜歡閱讀中國古典文學總計(2)為做好文化建設引領,實驗組把該校作為試點,和該校的學生進行中國古典文學閱讀交流.實驗人員已經從所調查的120人中篩選出4名男生和3名女生共7人作為代表,這7個代表中有2名男生代表和2名女生代表喜歡中國古典文學.現從這7名代表中任選3名男生代表和2名女生代表參加座談會,記為參加會議的人中喜歡古典文學的人數,求5的分布列及數學期望附表及公式:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

設,則MF的中點坐標為,代入雙曲線的方程可得的關系,再轉化成關于的齊次方程,求出的值,即可得答案.【詳解】雙曲線的右頂點為,右焦點為,M所在直線為,不妨設,∴MF的中點坐標為.代入方程可得,∴,∴,∴(負值舍去).故選:A.【點睛】本題考查雙曲線的離心率,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意構造的齊次方程.2、D【解析】

由幾何法求出圓心到直線的距離,再與半徑作比較,由此可得出結論.【詳解】解:由題意,圓的圓心為,半徑,∵圓心到直線的距離為,,,故選:D.【點睛】本題主要考查直線與圓的位置關系,屬于基礎題.3、D【解析】

由題意可得,從而得到,再由就可以得出其它各項的值,進而判斷出的范圍.【詳解】解:,或其積,或其商仍是該數列中的項,或者或者是該數列中的項,又數列是遞增數列,,,,只有是該數列中的項,同理可以得到,,,也是該數列中的項,且有,,或(舍,,根據,,,同理易得,,,,,,,故選:D.【點睛】本題考查數列的新定義的理解和運用,以及運算能力和推理能力,屬于中檔題.4、C【解析】

設,,,,設直線的方程為:,與拋物線方程聯立,由△得,利用韋達定理結合已知條件得,,代入上式即可求出的取值范圍.【詳解】設直線的方程為:,,,,,聯立方程,消去得:,△,,且,,,線段的中點為,,,,,,,,把代入,得,,,故選:【點睛】本題主要考查了直線與拋物線的位置關系,考查了韋達定理的應用,屬于中檔題.5、C【解析】

利用復數相等的條件求得,,則答案可求.【詳解】由,得,.對應的點的坐標為,,.故選:.【點睛】本題考查復數的代數表示法及其幾何意義,考查復數相等的條件,是基礎題.6、D【解析】

利用倍角公式求得的值,利用誘導公式求得的值,利用同角三角函數關系式求得的值,進而求得的值,最后利用正切差角公式求得結果.【詳解】,,,,,,,,故選:D.【點睛】該題考查的是有關三角函數求值問題,涉及到的知識點有誘導公式,正切倍角公式,同角三角函數關系式,正切差角公式,屬于基礎題目.7、A【解析】過圓外一點,引圓的兩條切線,則經過兩切點的直線方程為,故選.8、C【解析】

根據拋物線定義,可得,,又,所以,所以,設,則,則,所以,所以直線的斜率.故選C.9、B【解析】

直接利用集合的基本運算求解即可.【詳解】解:全集,集合,,則,故選:.【點睛】本題考查集合的基本運算,屬于基礎題.10、D【解析】

根據約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優(yōu)解,求出最優(yōu)解的坐標,代入目標函數得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯立,得,可得點,由得,平移直線,當該直線經過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故選:D.【點睛】本題考查簡單的線性規(guī)劃,考查數形結合的解題思想方法,是基礎題.11、C【解析】

由題意,可根據向量運算法則得到(1﹣m),從而由向量分解的唯一性得出關于t的方程,求出t的值.【詳解】由題意及圖,,又,,所以,∴(1﹣m),又t,所以,解得m,t,故選C.【點睛】本題考查平面向量基本定理,根據分解的唯一性得到所求參數的方程是解答本題的關鍵,本題屬于基礎題.12、C【解析】

由已知畫出可行域,利用目標函數的幾何意義求最大值.【詳解】解:表示可行域內的點到坐標原點的距離的平方,畫出不等式組表示的可行域,如圖,由解得即點到坐標原點的距離最大,即.故選:.【點睛】本題考查線性規(guī)劃問題,考查數形結合的數學思想以及運算求解能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

利用二項展開式的通項公式求出展開式的通項,令,求出展開式中的系數.【詳解】二項展開式的通項為令得的系數為故答案為1.【點睛】利用二項展開式的通項公式是解決二項展開式的特定項問題的工具.14、【解析】

將三棱錐補成長方體,設,,,設三棱錐的外接球半徑為,求得的值,然后利用球體表面積公式可求得結果.【詳解】將三棱錐補成長方體,設,,,設三棱錐的外接球半徑為,則,由勾股定理可得,上述三個等式全部相加得,,因此,三棱錐的外接球面積為.故答案為:.【點睛】本題考查三棱錐外接球表面積的計算,根據三棱錐對棱長相等將三棱錐補成長方體是解答的關鍵,考查推理能力,屬于中等題.15、1296【解析】

先從4個男生選2個一組,將4人分成三組,然后從4個女生選2個一組,將4人分成三組,然后全排列即可.【詳解】由于每項工作至少由名男生和名女生完成,則先從4個男生選2個一組,將4人分成三組,所以男生的排法共有,同理女生的排法共有,故不同的安排共有種.故答案為:1296【點睛】本題主要考查了排列組合的應用,考查了學生應用數學解決實際問題的能力.16、【解析】

先令可得其展開式各項系數的和,又由題意得,解得,進而可得其展開式的通項,即可得答案.【詳解】令,則有,解得,則二項式的展開式的通項為,令,則其展開式中的第4項的系數為,故答案為:【點睛】此題考查二項式定理的應用,解題時需要區(qū)分展開式中各項系數的和與各二項式系數和,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)1;(2)見解析【解析】

(1)設,,聯立直線和拋物線方程,得,寫出韋達定理,根據弦長公式,即可求出;(2)由,得,根據導數的幾何意義,求出拋物線在點點處切線方程,進而求出,即可證出軸.【詳解】解:(1)設,,將直線代入中整理得:,∴,,∴,解得:.(2)同(1)假設,,由,得,從而拋物線在點點處的切線方程為,即,令,得,由(1)知,從而,這表明軸.【點睛】本題考查直線與拋物線的位置關系,涉及聯立方程組、韋達定理、弦長公式以及利用導數求切線方程,考查轉化思想和計算能力.18、(1);(2)分布列見解析,期望為.【解析】

(1)甲同學至少抽到2道B類題包含兩個事件:一個抽到2道B類題,一個是抽到3個B類題,計算出抽法數后可求得概率;(2)的所有可能值分別為,依次計算概率得分布列,再由期望公式計算期望.【詳解】(1)令“甲同學至少抽到2道B類題”為事件,則抽到2道類題有種取法,抽到3道類題有種取法,∴;(2)的所有可能值分別為,,,,,∴的分布列為:0123【點睛】本題考查古典概型,考查隨機變量的概率分布列和數學期望.解題關鍵是掌握相互獨立事件同時發(fā)生的概率計算公式.19、(1)1(2)1【解析】分析:(1)當時可得,可得.(2)先得到關系式,累乘可得,從而可得,即為定值.詳解:(1)當時,,又,所以.(2)即,由累乘可得,又,所以.即恒為定值1.點睛:本題考查組合數的有關運算,解題時要注意所給出的的定義,并結合組合數公式求解.由于運算量較大,解題時要注意運算的準確性,避免出現錯誤.20、(1)證明見解析(0,2);(2)存在,理由見解析【解析】

(1)設直線l的方程為y=kx+b代入拋物線的方程,利用OA⊥OB,求出b,即可知直線過定點(2)由斜率公式分別求出,,聯立直線與拋物線,橢圓,再由根與系數的關系得,,,代入,,化簡即可求解.【詳解】(1)證明:由題知,直線l的斜率存在且不過原點,故設由可得,.,,故所以直線l的方程為故直線l恒過定點.(2)由(1)知設由可得,,即存在常數滿足題意.【點睛】本題主要考查了直線與拋物線、橢圓的位置關系,直線過定點問題,考查學生分析解決問題的能力,屬于中檔題.21、(1)(2)【解析】

(1)由,可求,然后由時,可得,根據等比數列的通項可求(2)由,而,利用裂項相消法可求.【詳解】(1)當時,,解得,當時,①②②①得,即,數列是以2為首項,2為公比的等比數列,;(2)∴,∴,,.【點睛】本題考查遞推公式在數列的通項求解中的應用,等比數列的通項公式、裂項求和方法,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力.22、(1)見解析,沒有(2)見解析,【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論