版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省古丈縣第一中學2023屆高三3月第二次聯(lián)考數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知△ABC中,.點P為BC邊上的動點,則的最小值為()A.2 B. C. D.2.設,,則的值為()A. B.C. D.3.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.44.設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是A.y與x具有正的線性相關關系B.回歸直線過樣本點的中心(,)C.若該大學某女生身高增加1cm,則其體重約增加0.85kgD.若該大學某女生身高為170cm,則可斷定其體重比為58.79kg5.已知,若對任意,關于x的不等式(e為自然對數(shù)的底數(shù))至少有2個正整數(shù)解,則實數(shù)a的取值范圍是()A. B. C. D.6.已知實數(shù)、滿足約束條件,則的最大值為()A. B. C. D.7.如圖,在三棱柱中,底面為正三角形,側棱垂直底面,.若分別是棱上的點,且,,則異面直線與所成角的余弦值為()A. B. C. D.8.某幾何體的三視圖如圖所示,則該幾何體的體積是()A. B. C. D.9.設正項等比數(shù)列的前n項和為,若,,則公比()A. B.4 C. D.210.若直線的傾斜角為,則的值為()A. B. C. D.11.已知不同直線、與不同平面、,且,,則下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則12.函數(shù)的圖象為C,以下結論中正確的是()①圖象C關于直線對稱;②圖象C關于點對稱;③由y=2sin2x的圖象向右平移個單位長度可以得到圖象C.A.① B.①② C.②③ D.①②③二、填空題:本題共4小題,每小題5分,共20分。13.已知,,且,則最小值為__________.14.已知函數(shù)在點處的切線經(jīng)過原點,函數(shù)的最小值為,則________.15.函數(shù)的定義域為__________.16.如圖,在等腰三角形中,已知,,分別是邊上的點,且,其中且,若線段的中點分別為,則的最小值是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點為,直線交于兩點(異于坐標原點O).(1)若直線過點,,求的方程;(2)當時,判斷直線是否過定點,若過定點,求出定點坐標;若不過定點,說明理由.18.(12分)如圖1,在邊長為4的正方形中,是的中點,是的中點,現(xiàn)將三角形沿翻折成如圖2所示的五棱錐.(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.19.(12分)隨著小汽車的普及,“駕駛證”已經(jīng)成為現(xiàn)代人“必考”的證件之一.若某人報名參加了駕駛證考試,要順利地拿到駕駛證,他需要通過四個科目的考試,其中科目二為場地考試.在一次報名中,每個學員有5次參加科目二考試的機會(這5次考試機會中任何一次通過考試,就算順利通過,即進入下一科目考試;若5次都沒有通過,則需重新報名),其中前2次參加科目二考試免費,若前2次都沒有通過,則以后每次參加科目二考試都需要交200元的補考費.某駕校對以往2000個學員第1次參加科目二考試進行了統(tǒng)計,得到下表:考試情況男學員女學員第1次考科目二人數(shù)1200800第1次通過科目二人數(shù)960600第1次未通過科目二人數(shù)240200若以上表得到的男、女學員第1次通過科目二考試的頻率分別作為此駕校男、女學員每次通過科目二考試的概率,且每人每次是否通過科目二考試相互獨立.現(xiàn)有一對夫妻同時在此駕校報名參加了駕駛證考試,在本次報名中,若這對夫妻參加科目二考試的原則為:通過科目二考試或者用完所有機會為止.(1)求這對夫妻在本次報名中參加科目二考試都不需要交補考費的概率;(2)若這對夫妻前2次參加科目二考試均沒有通過,記這對夫妻在本次報名中參加科目二考試產(chǎn)生的補考費用之和為元,求的分布列與數(shù)學期望.20.(12分)如圖所示的幾何體中,,四邊形為正方形,四邊形為梯形,,,,為中點.(1)證明:;(2)求二面角的余弦值.21.(12分)已知各項均為正數(shù)的數(shù)列的前項和為,滿足,,,,恰為等比數(shù)列的前3項.(1)求數(shù)列,的通項公式;(2)求數(shù)列的前項和為;若對均滿足,求整數(shù)的最大值;(3)是否存在數(shù)列滿足等式成立,若存在,求出數(shù)列的通項公式;若不存在,請說明理由.22.(10分)已知,函數(shù).(1)若函數(shù)在上為減函數(shù),求實數(shù)的取值范圍;(2)求證:對上的任意兩個實數(shù),,總有成立.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
以BC的中點為坐標原點,建立直角坐標系,可得,設,運用向量的坐標表示,求得點A的軌跡,進而得到關于a的二次函數(shù),可得最小值.【詳解】以BC的中點為坐標原點,建立如圖的直角坐標系,可得,設,由,可得,即,則,當時,的最小值為.故選D.【點睛】本題考查向量數(shù)量積的坐標表示,考查轉化思想和二次函數(shù)的值域解法,考查運算能力,屬于中檔題.2、D【解析】
利用倍角公式求得的值,利用誘導公式求得的值,利用同角三角函數(shù)關系式求得的值,進而求得的值,最后利用正切差角公式求得結果.【詳解】,,,,,,,,故選:D.【點睛】該題考查的是有關三角函數(shù)求值問題,涉及到的知識點有誘導公式,正切倍角公式,同角三角函數(shù)關系式,正切差角公式,屬于基礎題目.3、A【解析】
由傾斜角的余弦值,求出正切值,即的關系,求出雙曲線的離心率.【詳解】解:設雙曲線的半個焦距為,由題意又,則,,,所以離心率,故選:A.【點睛】本題考查雙曲線的簡單幾何性質,屬于基礎題4、D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關關系,A正確;回歸直線過樣本點的中心(),B正確;該大學某女生身高增加1cm,預測其體重約增加0.85kg,C正確;該大學某女生身高為170cm,預測其體重約為0.85×170﹣85.71=58.79kg,D錯誤.故選D.5、B【解析】
構造函數(shù)(),求導可得在上單調遞增,則,問題轉化為,即至少有2個正整數(shù)解,構造函數(shù),,通過導數(shù)研究單調性,由可知,要使得至少有2個正整數(shù)解,只需即可,代入可求得結果.【詳解】構造函數(shù)(),則(),所以在上單調遞增,所以,故問題轉化為至少存在兩個正整數(shù)x,使得成立,設,,則,當時,單調遞增;當時,單調遞增.,整理得.故選:B.【點睛】本題考查導數(shù)在判斷函數(shù)單調性中的應用,考查不等式成立問題中求解參數(shù)問題,考查學生分析問題的能力和邏輯推理能力,難度較難.6、C【解析】
作出不等式組表示的平面區(qū)域,作出目標函數(shù)對應的直線,結合圖象知當直線過點時,取得最大值.【詳解】解:作出約束條件表示的可行域是以為頂點的三角形及其內部,如下圖表示:當目標函數(shù)經(jīng)過點時,取得最大值,最大值為.故選:C.【點睛】本題主要考查線性規(guī)劃等基礎知識;考查運算求解能力,數(shù)形結合思想,應用意識,屬于中檔題.7、B【解析】
建立空間直角坐標系,利用向量法計算出異面直線與所成角的余弦值.【詳解】依題意三棱柱底面是正三角形且側棱垂直于底面.設的中點為,建立空間直角坐標系如下圖所示.所以,所以.所以異面直線與所成角的余弦值為.故選:B【點睛】本小題主要考查異面直線所成的角的求法,屬于中檔題.8、A【解析】
觀察可知,這個幾何體由兩部分構成,:一個半圓柱體,底面圓的半徑為1,高為2;一個半球體,半徑為1,按公式計算可得體積。【詳解】設半圓柱體體積為,半球體體積為,由題得幾何體體積為,故選A。【點睛】本題通過三視圖考察空間識圖的能力,屬于基礎題。9、D【解析】
由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數(shù)列得,∴,故選:D.【點睛】本題主要考查等比數(shù)列的性質的應用,屬于基礎題.10、B【解析】
根據(jù)題意可得:,所求式子利用二倍角的正弦函數(shù)公式化簡,再利用同角三角函數(shù)間的基本關系弦化切后,將代入計算即可求出值.【詳解】由于直線的傾斜角為,所以,則故答案選B【點睛】本題考查二倍角的正弦函數(shù)公式,同角三角函數(shù)間的基本關系,以及直線傾斜角與斜率之間的關系,熟練掌握公式是解本題的關鍵.11、C【解析】
根據(jù)空間中平行關系、垂直關系的相關判定和性質可依次判斷各個選項得到結果.【詳解】對于,若,則可能為平行或異面直線,錯誤;對于,若,則可能為平行、相交或異面直線,錯誤;對于,若,且,由面面垂直的判定定理可知,正確;對于,若,只有當垂直于的交線時才有,錯誤.故選:.【點睛】本題考查空間中線面關系、面面關系相關命題的辨析,關鍵是熟練掌握空間中的平行關系與垂直關系的相關命題.12、B【解析】
根據(jù)三角函數(shù)的對稱軸、對稱中心和圖象變換的知識,判斷出正確的結論.【詳解】因為,又,所以①正確.,所以②正確.將的圖象向右平移個單位長度,得,所以③錯誤.所以①②正確,③錯誤.故選:B【點睛】本小題主要考查三角函數(shù)的對稱軸、對稱中心,考查三角函數(shù)圖象變換,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
首先整理所給的代數(shù)式,然后結合均值不等式的結論即可求得其最小值.【詳解】,結合可知原式,且,當且僅當時等號成立.即最小值為.【點睛】在應用基本不等式求最值時,要把握不等式成立的三個條件,就是“一正——各項均為正;二定——積或和為定值;三相等——等號能否取得”,若忽略了某個條件,就會出現(xiàn)錯誤.14、0【解析】
求出,求出切線點斜式方程,原點坐標代入,求出的值,求,求出單調區(qū)間,進而求出極小值最小值,即可求解.【詳解】,,,切線的方程:,又過原點,所以,,,.當時,;當時,.故函數(shù)的最小值,所以.故答案為:0.【點睛】本題考查導數(shù)的應用,涉及到導數(shù)的幾何意義、極值最值,屬于中檔題..15、【解析】
根據(jù)函數(shù)成立的條件列不等式組,求解即可得定義域.【詳解】解:要使函數(shù)有意義,則,即.則定義域為:.故答案為:【點睛】本題主要考查定義域的求解,要熟練掌握張建函數(shù)成立的條件.16、【解析】
根據(jù)條件及向量數(shù)量積運算求得,連接,由三角形中線的性質表示出.根據(jù)向量的線性運算及數(shù)量積公式表示出,結合二次函數(shù)性質即可求得最小值.【詳解】根據(jù)題意,連接,如下圖所示:在等腰三角形中,已知,則由向量數(shù)量積運算可知線段的中點分別為則由向量減法的線性運算可得所以因為,代入化簡可得因為所以當時,取得最小值因而故答案為:【點睛】本題考查了平面向量數(shù)量積的綜合應用,向量的線性運算及模的求法,二次函數(shù)最值的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)直線過定點【解析】
設.(1)由題意知,.設直線的方程為,由得,則,由根與系數(shù)的關系可得,所以.由,得,解得.所以拋物線的方程為.(2)設直線的方程為,由得,由根與系數(shù)的關系可得,所以,解得.所以直線的方程為,所以時,直線過定點.18、(1)證明見解析;(2).【解析】
(1)利用線面平行的定義證明即可(2)取的中點,并分別連接,,然后,證明相應的線面垂直關系,分別以,,為軸,軸,軸建立空間直角坐標系,利用坐標運算進行求解即可【詳解】證明:(1)在圖1中,連接.又,分別為,中點,所以.即圖2中有.又平面,平面,所以平面.解:(2)在圖2中,取的中點,并分別連接,.分析知,,.又平面平面,平面平面,平面,所以平面.又,所以,,.分別以,,為軸,軸,軸建立如圖所示的空間直角坐標系,則,,,,,所以,,.設平面的一個法向量,則,取,則,,所以.又,所以.分析知,直線與平面所成角的正弦值為.【點睛】本題考查線面平行的證明以及利用空間向量求解線面角問題,屬于基礎題19、(1);(2)見解析.【解析】
事件表示男學員在第次考科目二通過,事件表示女學員在第次考科目二通過(其中)(1)這對夫妻是否通過科目二考試相互獨立,利用獨立事件乘法公式即可求得;(2)補考費用之和為元可能取值為400,600,800,1000,1200,根據(jù)題意可求相應的概率,進而可求X的數(shù)學期望.【詳解】事件表示男學員在第次考科目二通過,事件表示女學員在第次考科目二通過(其中).(1)事件表示這對夫妻考科目二都不需要交補考費..(2)的可能取值為400,600,800,1000,1200.,,,,.則的分布列為:40060080010001200故(元).【點睛】本題以實際問題為素材,考查離散型隨機變量的概率及期望,解題時要注意獨立事件概率公式的靈活運用,屬于基礎題.20、(1)見解析;(2)【解析】
(1)取的中點,結合三角形中位線和長度關系,為平行四邊形,進而得到,根據(jù)線面平行判定定理可證得結論;(2)以,,為,,軸建立空間直角坐標系,分別求得兩面的法向量,求得法向量夾角的余弦值;根據(jù)二面角為銳角確定最終二面角的余弦值;【詳解】(1)取的中點,連結,因為為中點,,,所以,,∴為平行四邊形,所以,又因為,所以;(2)由題及(1)易知,,兩兩垂直,所以以,,為,,軸建立空間直角坐標系,則,,,,,,易知面的法向量為設面的法向量為則可得所以,如圖可知二面角為銳角,所以余弦值為【點睛】本題考查立體幾何中直線與平面平行關系的證明、空間向量法求解二面角,正確求解法向量是解題的關鍵,屬于中檔題.21、(2),(2),的最大整數(shù)是2.(3)存在,【解析】
(2)由可得(),然后把這兩個等式相減,化簡得,公差為2,因為,,為等比數(shù)列,所以,化簡計算得,,從而得到數(shù)列的通項公式,再計算出,,,從而可求出數(shù)列的通項公式;(2)令,化簡計算得,從而可得數(shù)列是遞增的,所以只要的最小值大于即可,而的最小值為,所以可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度養(yǎng)殖場節(jié)能減排與綠色低碳合作協(xié)議書3篇
- 二零二五年度航空航天器加工合作協(xié)議2篇
- 2025陶瓷現(xiàn)匯外貿合同書
- 二零二五年度籃球運動員長期保障合同3篇
- 2025年度農(nóng)村私人魚塘承包合同附漁業(yè)環(huán)保責任承諾書
- 二零二五年度汽車維修行業(yè)員工薪酬福利合同范本3篇
- 2025年度養(yǎng)殖土地租賃及農(nóng)業(yè)品牌建設合作協(xié)議3篇
- 2025年度農(nóng)機租賃與農(nóng)業(yè)廢棄物資源回收利用合作協(xié)議3篇
- 2025年度新能源充電樁建設公司成立協(xié)議書范本3篇
- 2025年度年度農(nóng)機租賃與農(nóng)業(yè)科技創(chuàng)新合作協(xié)議3篇
- 【9道期末】安徽省宣城市2023-2024學年九年級上學期期末道德與法治試題(含解析)
- 2024年醫(yī)藥行業(yè)年終總結.政策篇 易聯(lián)招采2024
- 《工程造價專業(yè)應用型本科畢業(yè)設計指導標準》
- 倉庫主管2025年終總結及2025工作計劃
- 2024年01月11396藥事管理與法規(guī)(本)期末試題答案
- 股權投資協(xié)議的風險控制
- 山西省晉中市2023-2024學年高一上學期期末考試 物理 含解析
- 裝卸工安全培訓課件
- 中成藥學完整版本
- 安全與急救學習通超星期末考試答案章節(jié)答案2024年
- 2024-2025學年度廣東省春季高考英語模擬試卷(解析版) - 副本
評論
0/150
提交評論