版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖南省岳陽縣一中、湘陰縣一中2023屆高三第八次練考數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線:(,)的焦距為.點(diǎn)為雙曲線的右頂點(diǎn),若點(diǎn)到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.32.設(shè)實(shí)數(shù)x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.43.下圖是我國第24~30屆奧運(yùn)獎牌數(shù)的回眸和中國代表團(tuán)獎牌總數(shù)統(tǒng)計(jì)圖,根據(jù)表和統(tǒng)計(jì)圖,以下描述正確的是().金牌(塊)銀牌(塊)銅牌(塊)獎牌總數(shù)2451112282516221254261622125027281615592832171463295121281003038272388A.中國代表團(tuán)的奧運(yùn)獎牌總數(shù)一直保持上升趨勢B.折線統(tǒng)計(jì)圖中的六條線段只是為了便于觀察圖象所反映的變化,不具有實(shí)際意義C.第30屆與第29屆北京奧運(yùn)會相比,奧運(yùn)金牌數(shù)、銀牌數(shù)、銅牌數(shù)都有所下降D.統(tǒng)計(jì)圖中前六屆奧運(yùn)會中國代表團(tuán)的奧運(yùn)獎牌總數(shù)的中位數(shù)是54.54.若函數(shù)有兩個極值點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.5.若(1+2ai)i=1-bi,其中a,b∈R,則|a+bi|=().A. B. C. D.56.已知為銳角,且,則等于()A. B. C. D.7.我國古代數(shù)學(xué)著作《九章算術(shù)》有如下問題:“今有蒲生一日,長三尺莞生一日,長一尺蒲生日自半,莞生日自倍.問幾何日而長倍?”意思是:“今有蒲草第天長高尺,蕪草第天長高尺以后,蒲草每天長高前一天的一半,蕪草每天長高前一天的倍.問第幾天莞草是蒲草的二倍?”你認(rèn)為莞草是蒲草的二倍長所需要的天數(shù)是()(結(jié)果采取“只入不舍”的原則取整數(shù),相關(guān)數(shù)據(jù):,)A. B. C. D.8.在中,為邊上的中線,為的中點(diǎn),且,,則()A. B. C. D.9.過雙曲線的左焦點(diǎn)作直線交雙曲線的兩天漸近線于,兩點(diǎn),若為線段的中點(diǎn),且(為坐標(biāo)原點(diǎn)),則雙曲線的離心率為()A. B. C. D.10.有一改形塔幾何體由若千個正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個頂點(diǎn)是下層正方體上底面各邊的中點(diǎn).已知最底層正方體的棱長為8,如果改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是()A.8 B.7 C.6 D.411.過拋物線的焦點(diǎn)的直線與拋物線交于、兩點(diǎn),且,拋物線的準(zhǔn)線與軸交于,的面積為,則()A. B. C. D.12.將函數(shù)圖象上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,再將圖像向左平移個單位長度,得到函數(shù)的圖象,則函數(shù)圖象的一個對稱中心為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的一條漸近線經(jīng)過點(diǎn),則該雙曲線的離心率為_______.14.已知雙曲線的右準(zhǔn)線與漸近線的交點(diǎn)在拋物線上,則實(shí)數(shù)的值為___________.15.已知雙曲線的左焦點(diǎn)為,、為雙曲線上關(guān)于原點(diǎn)對稱的兩點(diǎn),的中點(diǎn)為,的中點(diǎn)為,的中點(diǎn)為,若,且直線的斜率為,則__________,雙曲線的離心率為__________.16.如圖,在一個倒置的高為2的圓錐形容器中,裝有深度為的水,再放入一個半徑為1的不銹鋼制的實(shí)心半球后,半球的大圓面、水面均與容器口相平,則的值為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四棱錐中,底面為直角梯形,∥,為等邊三角形,平面底面,為的中點(diǎn).(1)求證:平面平面;(2)點(diǎn)在線段上,且,求平面與平面所成的銳二面角的余弦值.18.(12分)某大學(xué)開學(xué)期間,該大學(xué)附近一家快餐店招聘外賣騎手,該快餐店提供了兩種日工資結(jié)算方案:方案規(guī)定每日底薪100元,外賣業(yè)務(wù)每完成一單提成2元;方案規(guī)定每日底薪150元,外賣業(yè)務(wù)的前54單沒有提成,從第55單開始,每完成一單提成5元.該快餐店記錄了每天騎手的人均業(yè)務(wù)量,現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為七組,整理得到如圖所示的頻率分布直方圖.(1)隨機(jī)選取一天,估計(jì)這一天該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單的概率;(2)從以往統(tǒng)計(jì)數(shù)據(jù)看,新聘騎手選擇日工資方案的概率為,選擇方案的概率為.若甲、乙、丙、丁四名騎手分別到該快餐店應(yīng)聘,四人選擇日工資方案相互獨(dú)立,求至少有兩名騎手選擇方案的概率,(3)若僅從人日均收入的角度考慮,請你為新聘騎手做出日工資方案的選擇,并說明理由.(同組中的每個數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)19.(12分)以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且在兩種坐標(biāo)系中取相同的長度單位,建立極坐標(biāo)系,已知曲線,曲線(為參數(shù)),求曲線交點(diǎn)的直角坐標(biāo).20.(12分)求函數(shù)的最大值.21.(12分)已知函數(shù),其中.(1)函數(shù)在處的切線與直線垂直,求實(shí)數(shù)的值;(2)若函數(shù)在定義域上有兩個極值點(diǎn),且.①求實(shí)數(shù)的取值范圍;②求證:.22.(10分)在四棱錐的底面是菱形,底面,,分別是的中點(diǎn),.(Ⅰ)求證:;(Ⅱ)求直線與平面所成角的正弦值;(III)在邊上是否存在點(diǎn),使與所成角的余弦值為,若存在,確定點(diǎn)的位置;若不存在,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
由點(diǎn)到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點(diǎn)睛】本題考查求雙曲線的離心率,掌握漸近線方程與點(diǎn)到直線距離公式是解題基礎(chǔ).2、C【解析】
畫出可行域和目標(biāo)函數(shù),根據(jù)目標(biāo)函數(shù)的幾何意義平移得到答案.【詳解】如圖所示:畫出可行域和目標(biāo)函數(shù),z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據(jù)圖像知,當(dāng)x+y=2時(shí),且x∈-13,1時(shí),故選:C.【點(diǎn)睛】本題考查了線性規(guī)劃問題,畫出圖像是解題的關(guān)鍵.3、B【解析】
根據(jù)表格和折線統(tǒng)計(jì)圖逐一判斷即可.【詳解】A.中國代表團(tuán)的奧運(yùn)獎牌總數(shù)不是一直保持上升趨勢,29屆最多,錯誤;B.折線統(tǒng)計(jì)圖中的六條線段只是為了便于觀察圖象所反映的變化,不表示某種意思,正確;C.30屆與第29屆北京奧運(yùn)會相比,奧運(yùn)金牌數(shù)、銅牌數(shù)有所下降,銀牌數(shù)有所上升,錯誤;D.統(tǒng)計(jì)圖中前六屆奧運(yùn)會中國代表團(tuán)的奧運(yùn)獎牌總數(shù)按照順序排列的中位數(shù)為,不正確;故選:B【點(diǎn)睛】此題考查統(tǒng)計(jì)圖,關(guān)鍵點(diǎn)讀懂折線圖,屬于簡單題目.4、A【解析】試題分析:由題意得有兩個不相等的實(shí)數(shù)根,所以必有解,則,且,∴.考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)極值點(diǎn)【方法點(diǎn)睛】函數(shù)極值問題的常見類型及解題策略(1)知圖判斷函數(shù)極值的情況.先找導(dǎo)數(shù)為0的點(diǎn),再判斷導(dǎo)數(shù)為0的點(diǎn)的左、右兩側(cè)的導(dǎo)數(shù)符號.(2)已知函數(shù)求極值.求f′(x)―→求方程f′(x)=0的根―→列表檢驗(yàn)f′(x)在f′(x)=0的根的附近兩側(cè)的符號―→下結(jié)論.(3)已知極值求參數(shù).若函數(shù)f(x)在點(diǎn)(x0,y0)處取得極值,則f′(x0)=0,且在該點(diǎn)左、右兩側(cè)的導(dǎo)數(shù)值符號相反.5、C【解析】試題分析:由已知,-2a+i=1-bi,根據(jù)復(fù)數(shù)相等的充要條件,有a=-,b=-1所以|a+bi|=,選C考點(diǎn):復(fù)數(shù)的代數(shù)運(yùn)算,復(fù)數(shù)相等的充要條件,復(fù)數(shù)的模6、C【解析】
由可得,再利用計(jì)算即可.【詳解】因?yàn)?,,所以,所?故選:C.【點(diǎn)睛】本題考查二倍角公式的應(yīng)用,考查學(xué)生對三角函數(shù)式化簡求值公式的靈活運(yùn)用的能力,屬于基礎(chǔ)題.7、C【解析】
由題意可利用等比數(shù)列的求和公式得莞草與蒲草n天后長度,進(jìn)而可得:,解出即可得出.【詳解】由題意可得莞草與蒲草第n天的長度分別為據(jù)題意得:,解得2n=12,∴n21.故選:C.【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.8、A【解析】
根據(jù)向量的線性運(yùn)算可得,利用及,計(jì)算即可.【詳解】因?yàn)?所以,所以,故選:A【點(diǎn)睛】本題主要考查了向量的線性運(yùn)算,向量數(shù)量積的運(yùn)算,向量數(shù)量積的性質(zhì),屬于中檔題.9、C【解析】由題意可得雙曲線的漸近線的方程為.∵為線段的中點(diǎn),∴,則為等腰三角形.∴由雙曲線的的漸近線的性質(zhì)可得∴∴,即.∴雙曲線的離心率為故選C.點(diǎn)睛:本題考查了橢圓和雙曲線的定義和性質(zhì),考查了離心率的求解,同時(shí)涉及到橢圓的定義和雙曲線的定義及三角形的三邊的關(guān)系應(yīng)用,對于求解曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).10、A【解析】
則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,以此類推,能求出改形塔的最上層正方體的邊長小于1時(shí)該塔形中正方體的個數(shù)的最小值的求法.【詳解】最底層正方體的棱長為8,則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,從下往上第五層正方體的棱長為:,從下往上第六層正方體的棱長為:,從下往上第七層正方體的棱長為:,從下往上第八層正方體的棱長為:,∴改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個數(shù)至少是8.故選:A.【點(diǎn)睛】本小題主要考查正方體有關(guān)計(jì)算,屬于基礎(chǔ)題.11、B【解析】
設(shè)點(diǎn)、,并設(shè)直線的方程為,由得,將直線的方程代入韋達(dá)定理,求得,結(jié)合的面積求得的值,結(jié)合焦點(diǎn)弦長公式可求得.【詳解】設(shè)點(diǎn)、,并設(shè)直線的方程為,將直線的方程與拋物線方程聯(lián)立,消去得,由韋達(dá)定理得,,,,,,,,可得,,拋物線的準(zhǔn)線與軸交于,的面積為,解得,則拋物線的方程為,所以,.故選:B.【點(diǎn)睛】本題考查拋物線焦點(diǎn)弦長的計(jì)算,計(jì)算出拋物線的方程是解答的關(guān)鍵,考查計(jì)算能力,屬于中等題.12、D【解析】
根據(jù)函數(shù)圖象的變換規(guī)律可得到解析式,然后將四個選項(xiàng)代入逐一判斷即可.【詳解】解:圖象上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,得到再將圖像向左平移個單位長度,得到函數(shù)的圖象,故選:D【點(diǎn)睛】考查三角函數(shù)圖象的變換規(guī)律以及其有關(guān)性質(zhì),基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)雙曲線方程,可得漸近線方程,結(jié)合題意可表示,再由雙曲線a,b,c關(guān)系表示,最后結(jié)合雙曲線離心率公式計(jì)算得答案.【詳解】因?yàn)殡p曲線為,所以該雙曲線的漸近線方程為.又因?yàn)槠湟粭l漸近線經(jīng)過點(diǎn),即,則,由此可得.故答案為:.【點(diǎn)睛】本題考查由雙曲線的漸近線構(gòu)建方程表示系數(shù)關(guān)系進(jìn)而求離心率,屬于基礎(chǔ)題.14、【解析】
求出雙曲線的漸近線方程,右準(zhǔn)線方程,得到交點(diǎn)坐標(biāo)代入拋物線方程求解即可.【詳解】解:雙曲線的右準(zhǔn)線,漸近線,雙曲線的右準(zhǔn)線與漸近線的交點(diǎn),交點(diǎn)在拋物線上,可得:,解得.故答案為.【點(diǎn)睛】本題考查雙曲線的簡單性質(zhì)以及拋物線的簡單性質(zhì)的應(yīng)用,是基本知識的考查,屬于基礎(chǔ)題.15、【解析】
設(shè),,根據(jù)中點(diǎn)坐標(biāo)公式可得坐標(biāo),利用可得到點(diǎn)坐標(biāo)所滿足的方程,結(jié)合直線斜率可求得,進(jìn)而求得;將點(diǎn)坐標(biāo)代入雙曲線方程,結(jié)合焦點(diǎn)坐標(biāo)可求得,進(jìn)而得到離心率.【詳解】左焦點(diǎn)為,雙曲線的半焦距.設(shè),,,,,,即,,即,又直線斜率為,即,,,,在雙曲線上,,即,結(jié)合可解得:,,離心率.故答案為:;.【點(diǎn)睛】本題考查直線與雙曲線的綜合應(yīng)用問題,涉及到直線截雙曲線所得線段長度的求解、雙曲線離心率的求解問題;關(guān)鍵是能夠通過設(shè)點(diǎn)的方式,結(jié)合直線斜率、垂直關(guān)系、點(diǎn)在雙曲線上來構(gòu)造方程組求得所需變量的值.16、【解析】
由已知可得到圓錐的底面半徑,再由圓錐的體積等于半球的體積與水的體積之和即可建立方程.【詳解】設(shè)圓錐的底面半徑為,體積為,半球的體積為,水(小圓錐)的體積為,如圖則,所以,,解得,所以,,,由,得,解得.故答案為:【點(diǎn)睛】本題考查圓錐的體積、球的體積的計(jì)算,考查學(xué)生空間想象能力與計(jì)算能力,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】
(1)根據(jù)等邊三角形的性質(zhì)證得,根據(jù)面面垂直的性質(zhì)定理,證得底面,由此證得,結(jié)合證得平面,由此證得:平面平面.(2)建立空間直角坐標(biāo)系,利用平面和平面的法向量,計(jì)算出平面與平面所成的銳二面角的余弦值.【詳解】(1)證明:∵為等邊三角形,為的中點(diǎn),∴∵平面底面,平面底面,∴底面平面,∴又由題意可知為正方形,又,∴平面平面,∴平面平面(2)如圖建立空間直角坐標(biāo)系,則,,,由已知,得,設(shè)平面的法向量為,則令,則,∴由(1)知平面的法向量可取為∴∴平面與平面所成的銳二面角的余弦值為.【點(diǎn)睛】本小題主要考查面面垂直的判定定理和性質(zhì)定理,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1)0.4;(2);(3)應(yīng)選擇方案,理由見解析【解析】
(1)根據(jù)頻率分布直方圖,可求得該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單的頻率,即可估算其概率;(2)根據(jù)獨(dú)立重復(fù)試驗(yàn)概率求法,先求得四人中有0人、1人選擇方案的概率,再由對立事件概率性質(zhì)即可求得至少有兩名騎手選擇方案的概率;(3)設(shè)騎手每日完成外賣業(yè)務(wù)量為件,分別表示出方案的日工資和方案的日工資函數(shù)解析式,即可計(jì)算兩種計(jì)算方式下的數(shù)學(xué)期望,并根據(jù)數(shù)學(xué)期望作出選擇.【詳解】(1)設(shè)事件為“隨機(jī)選取一天,這一天該快餐店的騎手的人均日外賣業(yè)務(wù)量不少于65單”.根據(jù)頻率分布直方圖可知快餐店的人均日外賣業(yè)務(wù)量不少于65單的頻率分別為,∵,∴估計(jì)為0.4.(2)設(shè)事件′為“甲、乙、丙、丁四名騎手中至少有兩名騎手選擇方案”,設(shè)事件,為“甲、乙、丙、丁四名騎手中恰有人選擇方案”,則,所以四名騎手中至少有兩名騎手選擇方案的概率為.(3)設(shè)騎手每日完成外賣業(yè)務(wù)量為件,方案的日工資,方案的日工資,所以隨機(jī)變量的分布列為1601802002202402602800.050.050.20.30.20.150.05;同理,隨機(jī)變量的分布列為1501802302803300.30.30.20.150.05.∵,∴建議騎手應(yīng)選擇方案.【點(diǎn)睛】本題考查了頻率分布直方圖的簡單應(yīng)用,獨(dú)立重復(fù)試驗(yàn)概率的求法,數(shù)學(xué)期望的求法并由期望作出方案選擇,屬于中檔題.19、【解析】
利用極坐標(biāo)方程與普通方程、參數(shù)方程間的互化公式化簡即可.【詳解】因?yàn)?,所以,所以曲線的直角坐標(biāo)方程為.由,得,所以曲線的普通方程為.由,得,所以(舍),所以,所以曲線的交點(diǎn)坐標(biāo)為.【點(diǎn)睛】本題考查極坐標(biāo)方程與普通方程,參數(shù)方程與普通方程間的互化,考查學(xué)生的計(jì)算能力,是一道容易題.20、【解析】
試題分析:由柯西不等式得試題解析:因?yàn)椋裕忍柈?dāng)且僅當(dāng),即時(shí)成立.所以的最大值為.考點(diǎn):柯西不等式求最值21、(1);(2)①;②詳見解析.【解析】
(1)由函數(shù)在處的切線與直線垂直,即可得,對其求導(dǎo)并表示,代入上述方程即可解得答案;(2)①已知要求等價(jià)于在上有兩個根,且,即在上有兩個不相等的根,由二次函數(shù)的圖象與性質(zhì)構(gòu)建不等式組,解得答案,最后分析此時(shí)單調(diào)性推及極值說明即可;②由①可知,是方程的兩個不等的實(shí)根,由韋達(dá)定理可表達(dá)根與系數(shù)的關(guān)系,進(jìn)而用含的式子表示,令,對求導(dǎo)分析單調(diào)性,即可知道存在常數(shù)使在上單調(diào)遞減,在上單調(diào)遞增,進(jìn)而求最值證明不等式成立.【詳解】解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度冷鏈物流空調(diào)清洗消毒與防凍服務(wù)合同2篇
- 2025年度企業(yè)內(nèi)部員工保密協(xié)議(新修訂)5篇
- 二零二五年度國際會議兼職同聲傳譯及外教聘請協(xié)議3篇
- 2025年香港建筑工程合同正規(guī)范本標(biāo)準(zhǔn)版6篇
- 二零二五年度城市污水處理廠承包管理服務(wù)協(xié)議4篇
- 二零二五年度大型活動現(xiàn)場解說配音合作協(xié)議4篇
- 2025年噴灌系統(tǒng)節(jié)水技術(shù)創(chuàng)新合作合同4篇
- 2025年度農(nóng)產(chǎn)品供應(yīng)鏈金融合作協(xié)議-@-1
- 二零二五年度展覽館場地租賃與展會組織服務(wù)合同3篇
- 2025年金融科技支付系統(tǒng)開發(fā)與運(yùn)營合同3篇
- 茉莉花-附指法鋼琴譜五線譜
- 結(jié)婚函調(diào)報(bào)告表
- SYT 6968-2021 油氣輸送管道工程水平定向鉆穿越設(shè)計(jì)規(guī)范-PDF解密
- 冷庫制冷負(fù)荷計(jì)算表
- 肩袖損傷護(hù)理查房
- 設(shè)備運(yùn)維管理安全規(guī)范標(biāo)準(zhǔn)
- 辦文辦會辦事實(shí)務(wù)課件
- 大學(xué)宿舍人際關(guān)系
- 2023光明小升初(語文)試卷
- GB/T 14600-2009電子工業(yè)用氣體氧化亞氮
- 申請使用物業(yè)專項(xiàng)維修資金征求業(yè)主意見表
評論
0/150
提交評論