版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
關(guān)于線性規(guī)劃問題及單純形解法第1頁,課件共70頁,創(chuàng)作于2023年2月2
線性規(guī)劃及應(yīng)用簡介
線性規(guī)劃是運(yùn)籌學(xué)的一個(gè)最基本的分支,它已成為幫助各級管理人員進(jìn)行決策的·一種十分重要的工具.是一種目前最常用而又最為成功的定性分析和定量分析相結(jié)合的管理優(yōu)化技術(shù)。其原因有三:一、應(yīng)用廣泛.管理工作中的大量優(yōu)化問題可以用線性規(guī)劃的模型來表達(dá)第2頁,課件共70頁,創(chuàng)作于2023年2月3三、求解方法采用成熟的單純形法.目前,用單純形法解線性規(guī)劃的計(jì)算機(jī)程序已大量涌現(xiàn),在計(jì)算機(jī)上求解此類問題已十分容易二、模型較為簡單,容易建立,容易學(xué)習(xí)和掌握.第3頁,課件共70頁,創(chuàng)作于2023年2月4
線性規(guī)劃的一種最大量、最普遍的應(yīng)用就是研究有限資源的合理利用問題,或說資源的最優(yōu)配置問題.資源分配問題有多種多樣的具體形式.例:
線性規(guī)劃解決的問題:1、生產(chǎn)的合理安排問題2、投資決策問題3、運(yùn)輸問題第4頁,課件共70頁,創(chuàng)作于2023年2月51.1什么是線性規(guī)劃
(LinearProgramming)1.1.1Lp的簡單例子和模型
(1)數(shù)學(xué)模型
一個(gè)實(shí)際問題的數(shù)學(xué)模型,是依據(jù)客觀規(guī)律,對該問題中我們所關(guān)心的那些量進(jìn)行科學(xué)的分析后得出的反映這些量之間本質(zhì)聯(lián)系的數(shù)學(xué)關(guān)系式。第5頁,課件共70頁,創(chuàng)作于2023年2月6
單位單位時(shí)耗資源
一
二現(xiàn)有工時(shí)攪拌機(jī)/小時(shí)3515成形機(jī)/小時(shí)215烘箱/小時(shí)2211利潤(百元/噸)54例1.2-1餅干生產(chǎn)問題第6頁,課件共70頁,創(chuàng)作于2023年2月7
問題:如何制訂生產(chǎn)計(jì)劃,才能使資源利用充分并使廠方獲最大利潤。
第7頁,課件共70頁,創(chuàng)作于2023年2月8解:設(shè)由x1,x2
分別表示1,2型餅干每天的生產(chǎn)量。
max
z=5x1+4x2
s.t.3x1+5x2≤15,2x1+x2≤5,2x1+2x2≤11,x1,x2≥0.max——maximize,s.t.——subjectto第8頁,課件共70頁,創(chuàng)作于2023年2月9單臺運(yùn)費(fèi)B1(100)B2(80)B3(90,120)A1(200)152118A2(150)162516問題:如何調(diào)運(yùn)才能即滿足用戶需要,又使總運(yùn)費(fèi)最少? 例1.2-2運(yùn)輸問題
第9頁,課件共70頁,創(chuàng)作于2023年2月10第10頁,課件共70頁,創(chuàng)作于2023年2月111.1.2線性規(guī)劃數(shù)學(xué)模型的一般表示方式第11頁,課件共70頁,創(chuàng)作于2023年2月121.1.3線性規(guī)劃數(shù)學(xué)模型的標(biāo)準(zhǔn)型第12頁,課件共70頁,創(chuàng)作于2023年2月131、標(biāo)準(zhǔn)型的幾種不同的表示方式
1)和式
第13頁,課件共70頁,創(chuàng)作于2023年2月142)向量式第14頁,課件共70頁,創(chuàng)作于2023年2月153)矩陣第15頁,課件共70頁,創(chuàng)作于2023年2月16
1)A中沒有多余方程;2)b02、對標(biāo)準(zhǔn)型問題作出的假設(shè)第16頁,課件共70頁,創(chuàng)作于2023年2月17
最優(yōu)解使z達(dá)到最優(yōu)的可行解就是最優(yōu)解(有解(給定的Lp問題有最優(yōu)解)、否則無解)可行解
滿足約束條件和非負(fù)條件的解X稱為可行解,所有可行解組成的集合稱之為可行解集(可行域)3、LP問題解的幾個(gè)基本概念第17頁,課件共70頁,創(chuàng)作于2023年2月182.第i個(gè)約束的bi
為負(fù)值,則在bi所在之方程的兩邊乘以-1。4、一般型變標(biāo)準(zhǔn)型的變換方法:1.目標(biāo)函數(shù)為min型時(shí),價(jià)值系數(shù)一律反號。即令z(x)=-z(x)=-CX第18頁,課件共70頁,創(chuàng)作于2023年2月193.第i個(gè)約束為型,在不等式左邊增加一個(gè)非負(fù)的變量xn+i
,稱為松弛變量(原有變量為構(gòu)造變量);同時(shí)令cn+i
=0
4.第i個(gè)約束為型,在不等式左邊減去一個(gè)非負(fù)的變量xn+i
,稱為剩余變量;同時(shí)令cn+i
=0
第19頁,課件共70頁,創(chuàng)作于2023年2月206.若xj無符號限制,令
xj=xj-xj,xj
0,xj0,代入非標(biāo)準(zhǔn)型5.若xj0,令
xj=-xj
,代入非標(biāo)準(zhǔn)型,則有xj
0第20頁,課件共70頁,創(chuàng)作于2023年2月21原非標(biāo)準(zhǔn)型:maxz=5x1+4x2
s.t.3x1+5x2≤15,2x1+x2≤5,2x1+2x2≤11,x1,x2≥0.5、
變換舉例
例1.
第21頁,課件共70頁,創(chuàng)作于2023年2月22標(biāo)準(zhǔn)型:maxz=5x1+4x2
s.t.3x1+5x2+x3=15,2x1+x2+
x4=5,2x1+2x2+x5=11,x1,x2,x3,x4,x5≥0.第22頁,課件共70頁,創(chuàng)作于2023年2月23例2第23頁,課件共70頁,創(chuàng)作于2023年2月24標(biāo)準(zhǔn)型:maxf(x)=-3x1+2x2-4x3′+4x3′′+0x4+0x5+0x6s.t.2x1+3x2+4x3′-4x3′′-x4=300,x1+5x2+6x3′-6x3′′+x5=400,x1+x2+x3′-x3′′+x6=200,x1,x2,x3′,x3′′,x4,x5,x6≥0.第24頁,課件共70頁,創(chuàng)作于2023年2月25
1.2求解LP問題的基本定理
1.2.1LP的圖解法
對于只有兩個(gè)決策變量的線性規(guī)劃問題,可以在平面直角坐標(biāo)系上作圖表示線性規(guī)劃問題的有關(guān)概念,并求解。
如:第25頁,課件共70頁,創(chuàng)作于2023年2月26例1.3Maxz=50x1+100x2
s.t.x1+x2≤3002x1+x2≤400x2≤250x1、
x2≥0第26頁,課件共70頁,創(chuàng)作于2023年2月27采用圖解法(1)分別取決策變量X1,X2
為坐標(biāo)向量建立直角坐標(biāo)系。在直角坐標(biāo)系里,圖上任意一點(diǎn)的坐標(biāo)代表了決策變量的一組值,例1.3的每個(gè)約束條件都代表一個(gè)半平面。x2x1X2≥0X2=0x2x1X1≥0X1=0第27頁,課件共70頁,創(chuàng)作于2023年2月28(2)對每個(gè)不等式(約束條件),先取其等式在坐標(biāo)系中作直線,然后確定不等式所決定的半平面。100200300100200300x1+x2≤300x1+x2=3001001002002x1+x2≤4002x1+x2=400300200300400第28頁,課件共70頁,創(chuàng)作于2023年2月29(3)把五個(gè)圖合并成一個(gè)圖,取各約束條件的公共部分,如P7圖1-2所示。100100x2≤250x2=250200300200300x1x2x2=0x1=0x2=250x1+x2=3002x1+x2=400圖1-2第29頁,課件共70頁,創(chuàng)作于2023年2月30(4)目標(biāo)函數(shù)z=50x1+100x2,當(dāng)z取某一固定值時(shí)得到一條直線,直線上的每一點(diǎn)都具有相同的目標(biāo)函數(shù)值,稱之為“等值線”。平行移動等值線,當(dāng)移動到B點(diǎn)時(shí),z在可行域內(nèi)實(shí)現(xiàn)了最大化。A,B,C,D,E是可行域的頂點(diǎn),對有限個(gè)約束條件則其可行域的頂點(diǎn)也是有限的。x1x2z=20000=50x1+100x2圖1-3z=27500=50x1+100x2z=0=50x1+100x2z=10000=50x1+100x2CBADEx1+x2=300第30頁,課件共70頁,創(chuàng)作于2023年2月31得到最優(yōu)解:
x1=50,x2=250
最優(yōu)目標(biāo)值z=27500第31頁,課件共70頁,創(chuàng)作于2023年2月32若在上例模型中中引入松弛變量s1s2s3模型化為:Maxz=50x1+100x2+0s1+0s2+0s3s.t.x1+x2+s1=3002x1+x2+s2=400x2+s3=
250x1,x2,s1,s2,s3≥0
可求解得其最優(yōu)解為:
x1=50x2=250s1=0s2=50s3=0說明:生產(chǎn)50單位Ⅰ產(chǎn)品和250單位Ⅱ產(chǎn)品將消耗完所有資源1和3,但資源2還剩余50。第32頁,課件共70頁,創(chuàng)作于2023年2月33maxz=5x1+4x21.1s.t.3x1+5x2≤15,1.22x1+x2≤5,1.32x1+2x2≤11,1.4x1,x2≥0.1.5無需化標(biāo)準(zhǔn)形
例1.2-1求解餅干生產(chǎn)問題第33頁,課件共70頁,創(chuàng)作于2023年2月34圖中的OABC即為滿足約束條件的可行解集S,需在S中找出最優(yōu)解,若z為一常數(shù)z0則z0=5x1+4x2為目標(biāo)函數(shù)等值線(x1=10/7,x2=15/7,z*=110/7)。第34頁,課件共70頁,創(chuàng)作于2023年2月35例1.2-2假設(shè)上例中的目標(biāo)函數(shù)變?yōu)?/p>
z=3x1+5x2
此時(shí)最優(yōu)目標(biāo)函數(shù)等值線與AB邊重合,AB上每一點(diǎn)均為最優(yōu)解(無窮個(gè))例1.2-3可行解集為一無界集合
見P18圖1.3若是求目標(biāo)函數(shù)最小值,則有最優(yōu)解。若是求目標(biāo)函數(shù)最大值,則無最優(yōu)解。若可行解集為空集,則無解,P19圖1.4第35頁,課件共70頁,創(chuàng)作于2023年2月36求解LP問題的重要規(guī)律:一、解的存在性問題二、解的結(jié)構(gòu)問題三、關(guān)于最優(yōu)解的獲得方法問題(在可行解集的某些“頂點(diǎn)”得到)第36頁,課件共70頁,創(chuàng)作于2023年2月37關(guān)于LP問題求解的一些基本概念和特點(diǎn):1、兩個(gè)基本概念凸集:實(shí)向量空間E中任意兩點(diǎn)連線上的一切點(diǎn)仍屬于E(見P20)
極點(diǎn)就是不能成為E中任何線段的內(nèi)點(diǎn)的那種點(diǎn)第37頁,課件共70頁,創(chuàng)作于2023年2月38
2、Lp問題的幾個(gè)特點(diǎn)(相關(guān)證明請看1.7節(jié)):
最優(yōu)解只可能在凸集的極點(diǎn)上,而不可能發(fā)生在凸集的內(nèi)部
線性規(guī)劃問題的可行解集S是凸集
設(shè)X屬于S,若x=0,則一定為極點(diǎn);若x0,則為極點(diǎn)的充要條件是:x的正分量所對應(yīng)的系數(shù)列向量線性無關(guān)。
只要存在可行解,就一定存在極點(diǎn)
極點(diǎn)的個(gè)數(shù)是有限的第38頁,課件共70頁,創(chuàng)作于2023年2月392、“基”的概念在標(biāo)準(zhǔn)型中,技術(shù)系數(shù)矩陣有n+m列,即
A=(P1,P2,…,Pn,Pn+1,,Pn+2,..Pn+m)因r(A)=m,所以A的極大無關(guān)組含有m個(gè)線性無關(guān)的向量。
關(guān)于標(biāo)準(zhǔn)型解的若干基本概念:1、標(biāo)準(zhǔn)型有n+m個(gè)變量,m個(gè)約束行第39頁,課件共70頁,創(chuàng)作于2023年2月40
基、基變量、非基變量——技術(shù)系數(shù)矩陣A(標(biāo)準(zhǔn)線性規(guī)劃模型)中m個(gè)線性無關(guān)的列向量所對應(yīng)的m個(gè)變量,構(gòu)成該LP問題的一個(gè)基,這m個(gè)變量的系數(shù)列向量組成的矩陣稱為基陣,記為B。基中的每個(gè)變量稱為基變量,記為XB。其余的變量即為非基變量,記為XN
。如:Maxz=50x1+100x2s.t.x1+x2+s1=3002x1+x2+s2=400x2+s3=250x1,x2,s1,s2,s3≥0基解:令非基變量XN=0,求得基變量XB的值稱為基解.基可行解:若基解中所有的XB
都≥0時(shí),稱為基可行解.
第40頁,課件共70頁,創(chuàng)作于2023年2月41
若基可行解的所有基變量均取正值,則稱為非退化的基可行解,如果某些基變量取零值,則為退化的基可行解。第41頁,課件共70頁,創(chuàng)作于2023年2月42可行解、基解和基可行解舉例第42頁,課件共70頁,創(chuàng)作于2023年2月43可行解、基礎(chǔ)解和基礎(chǔ)可行解舉例第43頁,課件共70頁,創(chuàng)作于2023年2月44X是極點(diǎn)的充分必要條件是:它是基可行解。由此,有關(guān)極點(diǎn)的結(jié)果可轉(zhuǎn)到基可行解上:
只要存在可行解,就一定存在基可行解;基可行解的個(gè)數(shù)是有限的;若LP問題有最優(yōu)解,則最優(yōu)解一定可以在基可行解中找到。第44頁,課件共70頁,創(chuàng)作于2023年2月45
1.3單純型法的基本思路確定初始基可行解是否為最優(yōu)確定改善方向求新的基可行解求最優(yōu)解的目標(biāo)函數(shù)值是否第45頁,課件共70頁,創(chuàng)作于2023年2月46(1)單純形表的組成及形式設(shè)B是初始可行基向量,則目標(biāo)函數(shù)可寫為兩部分(1)約束條件也寫為兩部分,經(jīng)整理得XB的表達(dá)式(2),注意XB中含有非基變量作參數(shù)把XB代入目標(biāo)函數(shù),整理得到(3)式若所有非基變量的檢驗(yàn)數(shù)σi0,則達(dá)到最優(yōu)第46頁,課件共70頁,創(chuàng)作于2023年2月47單純形表第47頁,課件共70頁,創(chuàng)作于2023年2月48例1.1試列出下面線性規(guī)劃問題的初始單純形表
第48頁,課件共70頁,創(chuàng)作于2023年2月49
找初始基礎(chǔ)可行基對于(max,),松弛變量對應(yīng)的列構(gòu)成一個(gè)單位陣若有bi<0,則單位陣也不能構(gòu)成一個(gè)可行基
檢驗(yàn)當(dāng)前基礎(chǔ)可行解是否為最優(yōu)解所有檢驗(yàn)數(shù)σj0,則為最優(yōu)解,否則1.3.2標(biāo)準(zhǔn)型的單純型法基本步驟
第49頁,課件共70頁,創(chuàng)作于2023年2月504確定出基變量最小比例原則3確定入基變量從σj>0中找最大者,選中者稱為入基變量
xj*
第j*列稱為主列第50頁,課件共70頁,創(chuàng)作于2023年2月51設(shè)第i*行使最小,則第i*行對應(yīng)的基變量稱為出基變量,第i*行稱為主行5迭代過程主行i*行與主列j*相交的元素ai*j*稱為主元,迭代以主元為中心進(jìn)行迭代的實(shí)質(zhì)是線性變換,即要將主元ai*j*變?yōu)?,主列上其它元素變?yōu)?,變換步驟如下:(1)變換主行第51頁,課件共70頁,創(chuàng)作于2023年2月52(2)變換主列除主元保留為1,其余都置0(3)變換非主行、主列元素aij(包括bi)(4)變換CB,XB(5)計(jì)算目標(biāo)函數(shù)、機(jī)會成本zj和檢驗(yàn)數(shù)cjzj6、返回步驟2第52頁,課件共70頁,創(chuàng)作于2023年2月53例1.1單純形表的迭代過程答:最優(yōu)解為x1=20,x2=20,x3=0,OBJ=1700第53頁,課件共70頁,創(chuàng)作于2023年2月541.3.3基可行解的判別和改進(jìn)定理1.6
若所有檢驗(yàn)數(shù)σj0,則為最優(yōu)解定理1.7
若存在某一個(gè)檢驗(yàn)數(shù)>0,而它所對應(yīng)的列向量的全部分量0,則所給問題無最優(yōu)解
除上述兩種情況外,若每個(gè)正檢驗(yàn)數(shù)所對應(yīng)的列向量中都有正分量,則為確定最優(yōu)解需要進(jìn)行基的變換(換基)第54頁,課件共70頁,創(chuàng)作于2023年2月55請查看教材P29中單純形表的組成形式。第55頁,課件共70頁,創(chuàng)作于2023年2月56
當(dāng)約束條件為“”型,引入剩余變量和人工變量1.4人工變量的引入及其解法第56頁,課件共70頁,創(chuàng)作于2023年2月57
由于所添加的剩余變量的技術(shù)系數(shù)為1,不能作為初始可行基變量,為此引入一個(gè)人為的變量(注意,此時(shí)約束條件已為“=”型),以便取得初始基變量,故稱為人工變量.兩種方法:大M法兩階段法第57頁,課件共70頁,創(chuàng)作于2023年2月58多個(gè)基礎(chǔ)可行解都是最優(yōu)解,這些解在同一個(gè)平面上,且該平面與目標(biāo)函數(shù)等值面平行最優(yōu)單純形表中有非基變量的檢驗(yàn)數(shù)為01.5單純形法應(yīng)用的特例
1.5.1關(guān)于多重解問題第58頁,課件共70頁,創(chuàng)作于2023年2月59第59頁,課件共70頁,創(chuàng)作于2023年2月60例1.5.1的單純形表及其迭代過程第60頁,課件共70頁,創(chuàng)作于2023年2月61
在單純形法計(jì)算過程中,確定出基變量時(shí)有時(shí)存在兩個(gè)以上的相同的最小比值,即同時(shí)有多個(gè)基變量可選作出基變量,這樣在下一次迭代中就有了一個(gè)或幾個(gè)基變量等于零,這稱之為退化。1.5.2關(guān)于退化問題
第61頁,課件共70頁,創(chuàng)作于2023年2月62例1.5.2用單純形表求解下列線性規(guī)劃問題第62頁,課件共70頁,創(chuàng)作于2023年2月63迭代次數(shù)基變量CBbx1x2x3s1s2s3比值203/20000s1s2s30002431-1010020101
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個(gè)人經(jīng)營性貸款還款協(xié)議模板8篇
- 二零二五年廢棄物處理及廢品回收承包合同書3篇
- 二零二五年度倉儲租賃與智能化改造合同3篇
- 二零二五年度外資獨(dú)資公司股權(quán)變更操作細(xì)則合同
- 2025年個(gè)人汽車維修服務(wù)質(zhì)押擔(dān)保合同3篇
- 2025版高端餐飲集團(tuán)租賃管理與服務(wù)保障合同3篇
- 個(gè)人委托支付事務(wù)具體合同版B版
- 2024酒店裝修設(shè)計(jì)合同
- 2025年度智能果園蘋果采購與銷售管理合同4篇
- 2025年度園林景觀設(shè)計(jì)專利授權(quán)許可合同3篇
- 多重耐藥菌病人的管理-(1)課件
- (高清版)TDT 1056-2019 縣級國土資源調(diào)查生產(chǎn)成本定額
- 環(huán)境監(jiān)測對環(huán)境保護(hù)的意義
- 2023年數(shù)學(xué)競賽AMC8試卷(含答案)
- 神經(jīng)外科課件:神經(jīng)外科急重癥
- 2024年低壓電工證理論考試題庫及答案
- 2023年十天突破公務(wù)員面試
- 《瘋狂動物城》中英文對照(全本臺詞)
- 醫(yī)院住院醫(yī)師規(guī)范化培訓(xùn)證明(樣本)
- 小學(xué)六年級語文閱讀理解100篇(及答案)
- 氣功修煉十奧妙
評論
0/150
提交評論