![重慶市涪陵區(qū)涪陵高中2022-2023學(xué)年高考數(shù)學(xué)試題命題比賽模擬試卷_第1頁](http://file4.renrendoc.com/view/d870dbfbeff0a226ee673bea09b7cbba/d870dbfbeff0a226ee673bea09b7cbba1.gif)
![重慶市涪陵區(qū)涪陵高中2022-2023學(xué)年高考數(shù)學(xué)試題命題比賽模擬試卷_第2頁](http://file4.renrendoc.com/view/d870dbfbeff0a226ee673bea09b7cbba/d870dbfbeff0a226ee673bea09b7cbba2.gif)
![重慶市涪陵區(qū)涪陵高中2022-2023學(xué)年高考數(shù)學(xué)試題命題比賽模擬試卷_第3頁](http://file4.renrendoc.com/view/d870dbfbeff0a226ee673bea09b7cbba/d870dbfbeff0a226ee673bea09b7cbba3.gif)
![重慶市涪陵區(qū)涪陵高中2022-2023學(xué)年高考數(shù)學(xué)試題命題比賽模擬試卷_第4頁](http://file4.renrendoc.com/view/d870dbfbeff0a226ee673bea09b7cbba/d870dbfbeff0a226ee673bea09b7cbba4.gif)
![重慶市涪陵區(qū)涪陵高中2022-2023學(xué)年高考數(shù)學(xué)試題命題比賽模擬試卷_第5頁](http://file4.renrendoc.com/view/d870dbfbeff0a226ee673bea09b7cbba/d870dbfbeff0a226ee673bea09b7cbba5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
重慶市涪陵區(qū)涪陵高中2022-2023學(xué)年高考數(shù)學(xué)試題命題比賽模擬試卷(30)注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線是曲線的切線,則()A.或1 B.或2 C.或 D.或12.若為虛數(shù)單位,則復(fù)數(shù),則在復(fù)平面內(nèi)對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.一個由兩個圓柱組合而成的密閉容器內(nèi)裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時,液面以上空余部分的高為,如圖2放置容器時,液面以上空余部分的高為,則()A. B. C. D.4.若數(shù)列為等差數(shù)列,且滿足,為數(shù)列的前項和,則()A. B. C. D.5.設(shè)等差數(shù)列的前項和為,若,則()A.23 B.25 C.28 D.296.過拋物線的焦點F作兩條互相垂直的弦AB,CD,設(shè)P為拋物線上的一動點,,若,則的最小值是()A.1 B.2 C.3 D.47.如圖,在平行四邊形中,對角線與交于點,且,則()A. B.C. D.8.復(fù)數(shù)的共軛復(fù)數(shù)在復(fù)平面內(nèi)所對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知函數(shù)的部分圖象如圖所示,將此圖象分別作以下變換,那么變換后的圖象可以與原圖象重合的變換方式有()①繞著軸上一點旋轉(zhuǎn);②沿軸正方向平移;③以軸為軸作軸對稱;④以軸的某一條垂線為軸作軸對稱.A.①③ B.③④ C.②③ D.②④10.設(shè)點是橢圓上的一點,是橢圓的兩個焦點,若,則()A. B. C. D.11.設(shè)是等差數(shù)列,且公差不為零,其前項和為.則“,”是“為遞增數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件12.某幾何體的三視圖如圖所示,則該幾何體的最長棱的長為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知一個圓錐的底面積和側(cè)面積分別為和,則該圓錐的體積為________14.若,且,則的最小值是______.15.已知,橢圓的方程為,雙曲線方程為,與的離心率之積為,則的漸近線方程為________.16.若橢圓:的一個焦點坐標為,則的長軸長為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求不等式的解集;(2)若函數(shù)的定義域為,求實數(shù)的取值范圍.18.(12分)設(shè)數(shù)列是公差不為零的等差數(shù)列,其前項和為,,若,,成等比數(shù)列.(1)求及;(2)設(shè),設(shè)數(shù)列的前項和,證明:.19.(12分)在平面直角坐標系中,已知點,曲線:(為參數(shù))以原點為極點,軸正半軸建立極坐標系,直線的極坐標方程為.(Ⅰ)判斷點與直線的位置關(guān)系并說明理由;(Ⅱ)設(shè)直線與曲線的兩個交點分別為,,求的值.20.(12分)已知直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)設(shè)點,直線與曲線交于兩點,求的值.21.(12分)已知函數(shù),記不等式的解集為.(1)求;(2)設(shè),證明:.22.(10分)底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.若,.(1)求證:;(2)求二面角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
求得直線的斜率,利用曲線的導(dǎo)數(shù),求得切點坐標,代入直線方程,求得的值.【詳解】直線的斜率為,對于,令,解得,故切點為,代入直線方程得,解得或1.故選:D【點睛】本小題主要考查根據(jù)切線方程求參數(shù),屬于基礎(chǔ)題.2、B【解析】
首先根據(jù)特殊角的三角函數(shù)值將復(fù)數(shù)化為,求出,再利用復(fù)數(shù)的幾何意義即可求解.【詳解】,,則在復(fù)平面內(nèi)對應(yīng)的點的坐標為,位于第二象限.故選:B【點睛】本題考查了復(fù)數(shù)的幾何意義、共軛復(fù)數(shù)的概念、特殊角的三角函數(shù)值,屬于基礎(chǔ)題.3、B【解析】
根據(jù)空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因為,所以.故選:B【點睛】本題考查圓柱的體積,屬于基礎(chǔ)題.4、B【解析】
利用等差數(shù)列性質(zhì),若,則求出,再利用等差數(shù)列前項和公式得【詳解】解:因為,由等差數(shù)列性質(zhì),若,則得,.為數(shù)列的前項和,則.故選:.【點睛】本題考查等差數(shù)列性質(zhì)與等差數(shù)列前項和.(1)如果為等差數(shù)列,若,則.(2)要注意等差數(shù)列前項和公式的靈活應(yīng)用,如.5、D【解析】
由可求,再求公差,再求解即可.【詳解】解:是等差數(shù)列,又,公差為,,故選:D【點睛】考查等差數(shù)列的有關(guān)性質(zhì)、運算求解能力和推理論證能力,是基礎(chǔ)題.6、C【解析】
設(shè)直線AB的方程為,代入得:,由根與系數(shù)的關(guān)系得,,從而得到,同理可得,再利用求得的值,當Q,P,M三點共線時,即可得答案.【詳解】根據(jù)題意,可知拋物線的焦點為,則直線AB的斜率存在且不為0,設(shè)直線AB的方程為,代入得:.由根與系數(shù)的關(guān)系得,,所以.又直線CD的方程為,同理,所以,所以.故.過點P作PM垂直于準線,M為垂足,則由拋物線的定義可得.所以,當Q,P,M三點共線時,等號成立.故選:C.【點睛】本題考查直線與拋物線的位置關(guān)系、焦半徑公式的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意取最值的條件.7、C【解析】
畫出圖形,以為基底將向量進行分解后可得結(jié)果.【詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.【點睛】應(yīng)用平面向量基本定理應(yīng)注意的問題(1)只要兩個向量不共線,就可以作為平面的一組基底,基底可以有無窮多組,在解決具體問題時,合理選擇基底會給解題帶來方便.(2)利用已知向量表示未知向量,實質(zhì)就是利用平行四邊形法則或三角形法則進行向量的加減運算或數(shù)乘運算.8、D【解析】
由復(fù)數(shù)除法運算求出,再寫出其共軛復(fù)數(shù),得共軛復(fù)數(shù)對應(yīng)點的坐標.得結(jié)論.【詳解】,,對應(yīng)點為,在第四象限.故選:D.【點睛】本題考查復(fù)數(shù)的除法運算,考查共軛復(fù)數(shù)的概念,考查復(fù)數(shù)的幾何意義.掌握復(fù)數(shù)的運算法則是解題關(guān)鍵.9、D【解析】
計算得到,,故函數(shù)是周期函數(shù),軸對稱圖形,故②④正確,根據(jù)圖像知①③錯誤,得到答案.【詳解】,,,當沿軸正方向平移個單位時,重合,故②正確;,,故,函數(shù)關(guān)于對稱,故④正確;根據(jù)圖像知:①③不正確;故選:.【點睛】本題考查了根據(jù)函數(shù)圖像判斷函數(shù)性質(zhì),意在考查學(xué)生對于三角函數(shù)知識和圖像的綜合應(yīng)用.10、B【解析】∵∵∴∵,∴∴故選B點睛:本題主要考查利用橢圓的簡單性質(zhì)及橢圓的定義.求解與橢圓性質(zhì)有關(guān)的問題時要結(jié)合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、長軸、短軸等橢圓的基本量時,要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.11、A【解析】
根據(jù)等差數(shù)列的前項和公式以及充分條件和必要條件的定義進行判斷即可.【詳解】是等差數(shù)列,且公差不為零,其前項和為,充分性:,則對任意的恒成立,則,,若,則數(shù)列為單調(diào)遞減數(shù)列,則必存在,使得當時,,則,不合乎題意;若,由且數(shù)列為單調(diào)遞增數(shù)列,則對任意的,,合乎題意.所以,“,”“為遞增數(shù)列”;必要性:設(shè),當時,,此時,,但數(shù)列是遞增數(shù)列.所以,“,”“為遞增數(shù)列”.因此,“,”是“為遞增數(shù)列”的充分而不必要條件.故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合等差數(shù)列的前項和公式是解決本題的關(guān)鍵,屬于中等題.12、D【解析】
先根據(jù)三視圖還原幾何體是一個四棱錐,根據(jù)三視圖的數(shù)據(jù),計算各棱的長度.【詳解】根據(jù)三視圖可知,幾何體是一個四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長棱的長為故選:D【點睛】本題主要考查三視圖的應(yīng)用,還考查了空間想象和運算求解的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
依據(jù)圓錐的底面積和側(cè)面積公式,求出底面半徑和母線長,再根據(jù)勾股定理求出圓錐的高,最后利用圓錐的體積公式求出體積?!驹斀狻吭O(shè)圓錐的底面半徑為,母線長為,高為,所以有解得,故該圓錐的體積為。【點睛】本題主要考查圓錐的底面積、側(cè)面積和體積公式的應(yīng)用。14、8【解析】
利用的代換,將寫成,然后根據(jù)基本不等式求解最小值.【詳解】因為(即取等號),所以最小值為.【點睛】已知,求解()的最小值的處理方法:利用,得到,展開后利用基本不等式求解,注意取等號的條件.15、【解析】
求出橢圓與雙曲線的離心率,根據(jù)離心率之積的關(guān)系,然后推出關(guān)系,即可求解雙曲線的漸近線方程.【詳解】,橢圓的方程為,的離心率為:,雙曲線方程為,的離心率:,與的離心率之積為,,,的漸近線方程為:,即.故答案為:【點睛】本題考查了橢圓、雙曲線的幾何性質(zhì),掌握橢圓、雙曲線的離心率公式,屬于基礎(chǔ)題.16、【解析】
由焦點坐標得從而可求出,繼而得到橢圓的方程,即可求出長軸長.【詳解】解:因為一個焦點坐標為,則,即,解得或由表示的是橢圓,則,所以,則橢圓方程為所以.故答案為:.【點睛】本題考查了橢圓的標準方程,考查了橢圓的幾何意義.本題的易錯點是忽略,從而未對的兩個值進行取舍.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)分類討論,去掉絕對值,化為與之等價的三個不等式組,求得每個不等式組的解集,再取并集即可.(2)要使函數(shù)的定義域為R,只要的最小值大于0即可,根據(jù)絕對值不等式的性質(zhì)求得最小值即可得到答案.【詳解】(1)不等式或或,解得或,即x>0,所以原不等式的解集為.(2)要使函數(shù)的定義域為R,只要的最小值大于0即可,又,當且僅當時取等,只需最小值,即.所以實數(shù)a的取值范圍是.【點睛】本題考查絕對值不等式的解法,考查利用絕對值三角不等式求最值,屬基礎(chǔ)題.18、(1),;(2)證明見解析.【解析】
(1)根據(jù)題中條件求出等差數(shù)列的首項和公差,然后根據(jù)首項和公差即可求出數(shù)列的通項和前項和;(2)根據(jù)裂項求和求出,根據(jù)的表達式即可證明.【詳解】(1)設(shè)的公差為,由題意有,且,所以,;(2)因為,所以,.【點睛】本題主要考查了等差數(shù)列基本量的求解,裂項求和法,屬于基礎(chǔ)題.19、(Ⅰ)點在直線上;見解析(Ⅱ)【解析】
(Ⅰ)直線:,即,所以直線的直角坐標方程為,因為,所以點在直線上;(Ⅱ)根據(jù)直線的參數(shù)方程中參數(shù)的幾何意義可得.【詳解】(Ⅰ)直線:,即,所以直線的直角坐標方程為,因為,所以點在直線上;(Ⅱ)直線的參數(shù)方程為(為參數(shù)),曲線的普通方程為,將直線的參數(shù)方程代入曲線的普通方程得,設(shè)兩根為,,所以,,故與異號,所以,,所以.【點睛】本題考查在極坐標參數(shù)方程中方程互化,還考查了直線的參數(shù)方程中參數(shù)的幾何意義,屬于中檔題.20、(1)直線普通方程:,曲線直角坐標方程:;(2).【解析】
(1)消去直線參數(shù)方程中的參數(shù)即可得到其普通方程;將曲線極坐標方程化為,根據(jù)極坐標和直角坐標互化原則可得其直角坐標方程;(2)將直線參數(shù)方程代入曲線的直角坐標方程,根據(jù)參數(shù)的幾何意義可知,利用韋達定理求得結(jié)果.【詳解】(1)由直線參數(shù)方程消去可得普通方程為:曲線極坐標方程可化為:則曲線的直角坐標方程為:,即(2)將直線參數(shù)方程代入曲線的直角坐標方程,整理可得:設(shè)兩點對應(yīng)的參數(shù)分別為:,則,【點睛】本題考查極坐標與直角坐標的互化、參數(shù)方程與普通方程的互化、直線參數(shù)方程中參數(shù)的幾何意義的應(yīng)用;求解距離之和的關(guān)鍵是能夠明確直線參數(shù)方程中參數(shù)的幾何意義,利用韋達定理來進行求解.21、(1);(2)證明見解析【解析】
(1)利用零點分段法將表示為分段函數(shù)的形式,由此解不等式求得不等式的解集.(2)將不等式坐標因式分解,結(jié)合(1)的結(jié)論證得不等式成立.【詳解】(1)解:,由,解得,故.(2)證明:因為,所以,,所以,所以.【點睛】本小題主要考查絕對值不等式的解法,考查不等式的證明,屬于基礎(chǔ)題.22、(1)見解析;(2)【解析】
(1)先由線面垂直的判定定理證明平面,再證明線線垂直即可;(2)建立空間直角坐標系,求平面的一個法向量與平面的一個法向量,再利用向量數(shù)量
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年幼兒園教師學(xué)生健康監(jiān)測與疾病預(yù)防合同
- 迪慶云南迪慶香格里拉市招聘治安聯(lián)防人員80人筆試歷年參考題庫附帶答案詳解
- 蘇州江蘇蘇州大學(xué)納米科學(xué)技術(shù)學(xué)院課程助教招聘11人(202420252學(xué)期)筆試歷年參考題庫附帶答案詳解
- 舟山浙江舟山市普陀區(qū)機關(guān)事務(wù)管理中心編外人員招聘筆試歷年參考題庫附帶答案詳解
- 紅河2025年云南紅河金平縣人民法院招聘聘用制書記員司法警務(wù)輔助人員筆試歷年參考題庫附帶答案詳解
- 福建2025年福建水利電力職業(yè)技術(shù)學(xué)院招聘35人筆試歷年參考題庫附帶答案詳解
- 湖北2025年湖北民族大學(xué)人才引進163人筆試歷年參考題庫附帶答案詳解
- 浙江2025年春季浙江省新時代自貿(mào)港研究院招聘筆試歷年參考題庫附帶答案詳解
- 河南2024年河南體育學(xué)院冬季運動管理中心人事代理招聘11人筆試歷年參考題庫附帶答案詳解
- 桂林2025年廣西桂林市事業(yè)單位招聘1462人筆試歷年參考題庫附帶答案詳解
- 2024年山東省青島市普通高中自主招生物理試卷(含解析)
- 2024-2030年中國家禽用馬立克疫苗行業(yè)運營模式與前景動態(tài)預(yù)測研究報告
- 2024-2025學(xué)年陜西省英語小升初模擬試卷與參考答案
- 2024信息技術(shù)數(shù)字孿生能力成熟度模型
- 2024年浙江省公務(wù)員考試結(jié)構(gòu)化面試真題試題試卷答案解析
- 2024年四川省廣元市中考化學(xué)試卷(含答案逐題解析)
- DL-T 297-2023 汽輪發(fā)電機合金軸瓦超聲檢測
- JGJT 152-2019 混凝土中鋼筋檢測技術(shù)標準
- 交通銀行股份有限公司操作風(fēng)險管理政策
- 2024年《公務(wù)員法》相關(guān)法律法規(guī)知識考試題庫含完整答案(必刷)
- 手術(shù)室氣體的使用
評論
0/150
提交評論