版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022年湖北省鄂州市成考專升本高等數(shù)學一自考預測試題(含答案及部分解析)學校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.
3.
4.過點(1,0,0),(0,1,0),(0,0,1)的平面方程為().
A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
5.曲線y=ex與其過原點的切線及y軸所圍面積為
A.
B.
C.
D.
6.設(shè)z=ln(x2+y),則等于()。A.
B.
C.
D.
7.A.
B.
C.
D.
8.曲線y=x2+5x+4在點(-1,0)處切線的斜率為()A.A.2B.-2C.3D.-3
9.
10.微分方程y'+y=0的通解為y=A.e-x+C
B.-e-x+C
C.Ce-x
D.Cex
11.A.
B.0
C.ln2
D.-ln2
12.方程x2+y2-z=0表示的二次曲面是
A.橢圓面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面
13.
14.A.A.
B.B.
C.C.
D.D.
15.
A.
B.
C.
D.
16.
A.0
B.
C.1
D.
17.設(shè)y=e-3x,則dy=A.e-3xdx
B.-e-3xdx
C.-3e-3xdx
D.3e-3xdx
18.
19.
20.
二、填空題(20題)21.設(shè)y=sinx2,則dy=______.22.23.設(shè)y=1nx,則y'=__________.
24.
25.26.27.28.
29.
30.31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
三、計算題(20題)41.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.42.
43.
44.45.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.46.47.證明:
48.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
49.
50.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
51.求微分方程y"-4y'+4y=e-2x的通解.
52.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.53.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
54.將f(x)=e-2X展開為x的冪級數(shù).
55.
56.求曲線在點(1,3)處的切線方程.57.求微分方程的通解.58.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.59.當x一0時f(x)與sin2x是等價無窮小量,則60.四、解答題(10題)61.62.求y"+4y'+4y=e-x的通解.63.設(shè)函數(shù)y=xlnx,求y''.
64.
65.
66.
67.(本題滿分10分)求由曲線y=3-x2與y=2x,y軸所圍成的平面圖形的面積及該封閉圖形繞x軸旋轉(zhuǎn)-周所成旋轉(zhuǎn)體的體積.
68.(本題滿分8分)
69.求∫sin(x+2)dx。
70.求y"-2y'=2x的通解.五、高等數(shù)學(0題)71.設(shè)z=exy,則dz|(1,1)(1.1)=___________。
六、解答題(0題)72.設(shè)z=z(x,y)由x2+2y2+3z2+yz=1確定,求
參考答案
1.A
2.B
3.D
4.A設(shè)所求平面方程為.由于點(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標分別代入所設(shè)平面方程,可得方程組
故選A.
5.A
6.A本題考查的知識點為偏導數(shù)的計算。由于故知應(yīng)選A。
7.D本題考查的知識點為牛頓一萊布尼茨公式和定積分的換元法。因此選D。
8.C點(-1,0)在曲線y=x2+5x+4上.y=x2+5x+4,y'=2x+5,由導數(shù)的幾何意義可知,曲線y=x2+5x+4在點(-1,0)處切線的斜率為3,所以選C.
9.A解析:
10.C
11.A為初等函數(shù),定義區(qū)間為,點x=1在該定義區(qū)間內(nèi),因此
故選A.
12.C
13.C解析:
14.C本題考查了二重積分的積分區(qū)域的表示的知識點.
15.D本題考查的知識點為導數(shù)運算.
因此選D.
16.A
17.C
18.D
19.B
20.D解析:21.2xcosx2dx本題考查的知識點為一元函數(shù)的微分.
由于y=sinx2,y'=cosx2·(x2)'=2xcosx2,故dy=y'dx=2xcosx2dx.
22.
23.
24.1/x
25.
26.
27.3xln3
28.
本題考查的知識點為定積分的基本公式.
29.00解析:
30.
31.3/2本題考查了函數(shù)極限的四則運算的知識點。
32.33.
本題考查的知識點為二階線性常系數(shù)齊次微分方程的求解.
二階線性常系數(shù)齊次微分方程求解的-般步驟為:先寫出特征方程,求出特征根,再寫出方程的通解.
34.0<k≤10<k≤1解析:35.1
36.(1+x)ex(1+x)ex
解析:
37.
38.
解析:
39.
40.y=-x+141.由二重積分物理意義知
42.
則
43.
44.
45.
46.
47.
48.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%49.由一階線性微分方程通解公式有
50.函數(shù)的定義域為
注意
51.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
52.
列表:
說明
53.
54.
55.56.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
57.
58.
59.由等價無窮小量的定義可知
60.
61.
62.相應(yīng)的齊次方程為y"+4y'+4y=0,特征方程為r2+4r+4=0,即(r+2)2=0.特征根為r=-2(二重根).齊次方程的通解Y=(C1+C2x)e-2x.設(shè)所給方程的特解y*=Ae-x,代入所給方程可得A=1,從而y*=e-x.故原方程的通解為y=(C1+C2x)e-2x+e-x.
63.
64.
65.
66.特征方程為
r2—2r-8=0.
特征根為r1=-2,r2=4.
67.本題考查的知識點有兩個:利用定積分求平面圖形的面積;用定積分求繞坐標軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積.
所給曲線圍成的平面圖形如圖1-2所示.
解法1利用定積分求平面圖形的面積。
解法2利用二重積分求平面圖形面積.
求旋轉(zhuǎn)體體積與解法1同.
注本題也可以利用二重積分求平面圖形的面積.
68.本題考查的知識點為求解-階線性微分方程.
所給方程為-階線性微分方程
69.∫sin(x+2)dx=∫sin(x+2)d(x+2)=-cos(x+2)+C。70.y"-2y'=x為二階常系數(shù)線性微分方程.特征方程為y2-2r=0.特征根為r1=0,r2=2.相應(yīng)齊次方程的通解為y=C1+C2e2x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版食堂泔水處理與環(huán)保設(shè)備銷售合同2篇
- 2025年度電子商務(wù)平臺承包招商合同范本3篇
- 二零二五版大棚租賃合同綠色環(huán)保附加條款3篇
- 2025年度安全生產(chǎn)風險評估與管理合同集3篇
- 年度鈷基及鈷鎳基競爭策略分析報告
- 2025年暑期實習崗位勞動合同范本3篇
- 2025年度專業(yè)舞臺搭建租賃合同3篇
- 2024-2025學年高中歷史課時分層作業(yè)十二5.1科學社會主義的奠基人馬克思含解析新人教版選修4
- 2025年度環(huán)保節(jié)能零星工程設(shè)計與施工一體化合同4篇
- 2025年度現(xiàn)代農(nóng)業(yè)示范區(qū)農(nóng)資集成采購合同3篇
- 類文閱讀:一起長大的玩具(金波)
- 食品公司冷庫崗位風險告知卡
- 《AI營銷畫布:數(shù)字化營銷的落地與實戰(zhàn)》
- 崗位安全培訓考試題參考答案
- 英文書信及信封格式詳解(課堂)課件
- 星巴克的市場營銷策劃方案
- 南京某商城機電安裝施工組織設(shè)計
- 醫(yī)療設(shè)備托管服務(wù)投標方案
- 宗教教職人員備案表
- 麻醉藥品、精神藥品、放射性藥品、醫(yī)療用毒性藥品及藥品類易制毒化學品等特殊管理藥品的使用與管理規(guī)章制度
- 信訪事項復查復核申請書
評論
0/150
提交評論