2022-2023學年福建省仙游縣初三數(shù)學試題2月份考試卷含解析_第1頁
2022-2023學年福建省仙游縣初三數(shù)學試題2月份考試卷含解析_第2頁
2022-2023學年福建省仙游縣初三數(shù)學試題2月份考試卷含解析_第3頁
2022-2023學年福建省仙游縣初三數(shù)學試題2月份考試卷含解析_第4頁
2022-2023學年福建省仙游縣初三數(shù)學試題2月份考試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年福建省仙游縣初三數(shù)學試題2月份考試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(-1,0),其部分圖象如圖所示,下列結論:①4ac<b2;②方程ax2+bx+c=0的兩個根是x1=-1,x2=3;③3a+c>0;④當y>0時,x的取值范圍是-1≤x<3;⑤當x<0時,y隨x增大而增大.其中結論正確的個數(shù)是()A.4個 B.3個 C.2個 D.1個2.在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為()A.(,0) B.(2,0) C.(,0) D.(3,0)3.如圖,在中,,將折疊,使點落在邊上的點處,為折痕,若,則的值為()A. B. C. D.4.下列運算正確的是(

)A.a(chǎn)2·a3﹦a6

B.a(chǎn)3+a3﹦a6

C.|-a2|﹦a2

D.(-a2)3﹦a65.如圖,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以點C為圓心,CB長為半徑作弧,交AB于點D;再分別以點B和點D為圓心,大于BD的長為半徑作弧,兩弧相交于點E,作射線CE交AB于點F,則AF的長為()A.5 B.6 C.7 D.86.如圖所示的幾何體的俯視圖是()A. B. C. D.7.下列計算正確的是()A.a(chǎn)2?a3=a6 B.(a2)3=a6 C.a(chǎn)6﹣a2=a4 D.a(chǎn)5+a5=a108.如圖,O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,函數(shù)y=(k<0)的圖象經(jīng)過點B,則k的值為()A.﹣12 B.﹣32 C.32 D.﹣369.如圖,平面直角坐標系xOy中,四邊形OABC的邊OA在x軸正半軸上,BC∥x軸,∠OAB=90°,點C(3,2),連接OC.以OC為對稱軸將OA翻折到OA′,反比例函數(shù)y=的圖象恰好經(jīng)過點A′、B,則k的值是()A.9 B. C. D.310.計算-4-|-3|的結果是()A.-1B.-5C.1D.511.下列說法正確的是()A.“明天降雨的概率是60%”表示明天有60%的時間都在降雨B.“拋一枚硬幣正面朝上的概率為50%”表示每拋2次就有一次正面朝上C.“彩票中獎的概率為1%”表示買100張彩票肯定會中獎D.“拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近12.如圖,在中,、分別為、邊上的點,,與相交于點,則下列結論一定正確的是()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.分解因式:x2y﹣y=_____.14.當x為_____時,分式的值為1.15.如圖,將△AOB繞點O按逆時針方向旋轉45°后得到△COD,若∠AOB=15°,則∠AOD=_____度.16.比較大?。篲____1(填“<”或“>”或“=”).17.分解因式:x2y﹣4xy+4y=_____.18.函數(shù)y=中,自變量x的取值范圍是________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,直線與第一象限的一支雙曲線交于A、B兩點,A在B的左邊.(1)若=4,B(3,1),求直線及雙曲線的解析式:并直接寫出不等式的解集;(2)若A(1,3),第三象限的雙曲線上有一點C,接AC、BC,設直線BC解析式為;當AC⊥AB時,求證:k為定值.20.(6分)如圖,在△ABC中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點E.求證:DE=CE.若∠CDE=35°,求∠A的度數(shù).21.(6分)我市某學校在“行讀石鼓閣”研學活動中,參觀了我市中華石鼓園,石鼓閣是寶雞城市新地標.建筑面積7200平方米,為我國西北第一高閣.秦漢高臺門闕的建筑風格,追求穩(wěn)定之中的飛揚靈動,深厚之中的巧妙組合,使景觀功能和標志功能融為一體.小亮想知道石鼓閣的高是多少,他和同學李梅對石鼓閣進行測量.測量方案如下:如圖,李梅在小亮和“石鼓閣”之間的直線BM上平放一平面鏡,在鏡面上做了一個標記,這個標記在直線BM上的對應位置為點C,鏡子不動,李梅看著鏡面上的標記,她來回走動,走到點D時,看到“石鼓閣”頂端點A在鏡面中的像與鏡面上的標記重合,這時,測得李梅眼睛與地面的高度ED=1.6米,CD=2.2米,然后,在陽光下,小亮從D點沿DM方向走了29.4米,此時“石鼓閣”影子與小亮的影子頂端恰好重合,測得小亮身高1.7米,影長FH=3.4米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,測量時所使用的平面鏡的厚度忽略不計,請你根據(jù)題中提供的相關信息,求出“石鼓閣”的高AB的長度.22.(8分)某商場柜臺銷售每臺進價分別為160元、120元的、兩種型號的電器,下表是近兩周的銷售情況:銷售時段銷售數(shù)量銷售收入種型號種型號第一周3臺4臺1200元第二周5臺6臺1900元(進價、售價均保持不變,利潤=銷售收入—進貨成本)(1)求、兩種型號的電器的銷售單價;(2)若商場準備用不多于7500元的金額再采購這兩種型號的電器共50臺,求種型號的電器最多能采購多少臺?(3)在(2)中商場用不多于7500元采購這兩種型號的電器共50臺的條件下,商場銷售完這50臺電器能否實現(xiàn)利潤超過1850元的目標?若能,請給出相應的采購方案;若不能,請說明理由.23.(8分)如圖,已知拋物線(>0)與軸交于A,B兩點(A點在B點的左邊),與軸交于點C。(1)如圖1,若△ABC為直角三角形,求的值;(2)如圖1,在(1)的條件下,點P在拋物線上,點Q在拋物線的對稱軸上,若以BC為邊,以點B,C,P,Q為頂點的四邊形是平行四邊形,求P點的坐標;(3)如圖2,過點A作直線BC的平行線交拋物線于另一點D,交軸交于點E,若AE:ED=1:4,求的值.24.(10分)為實施“農村留守兒童關愛計劃”,某校結全校各班留守兒童的人數(shù)情況進行了統(tǒng)計,發(fā)現(xiàn)各班留守兒童人數(shù)只有1名、2名、3名、4名、5名、6名共六種情況,并制成如下兩幅不完整的統(tǒng)計圖:求該校平均每班有多少名留守兒童?并將該條形統(tǒng)計圖補充完整;某愛心人士決定從只有2名留守兒童的這些班級中,任選兩名進行生活資助,請用列表法或畫樹狀圖的方法,求出所選兩名留守兒童來自同一個班級的概率.25.(10分)如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點A,C,E在同一直線上.求坡底C點到大樓距離AC的值;求斜坡CD的長度.26.(12分)先化簡,后求值:,其中.27.(12分)如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點E為△ABC的內心,連接AE并延長交⊙O于D點,連接BD并延長至F,使得BD=DF,連接CF、BE.(1)求證:DB=DE;(2)求證:直線CF為⊙O的切線;(3)若CF=4,求圖中陰影部分的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

解:∵拋物線與x軸有2個交點,∴b2﹣4ac>0,所以①正確;∵拋物線的對稱軸為直線x=1,而點(﹣1,0)關于直線x=1的對稱點的坐標為(3,0),∴方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3,所以②正確;∵x=﹣=1,即b=﹣2a,而x=﹣1時,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③錯誤;∵拋物線與x軸的兩點坐標為(﹣1,0),(3,0),∴當﹣1<x<3時,y>0,所以④錯誤;∵拋物線的對稱軸為直線x=1,∴當x<1時,y隨x增大而增大,所以⑤正確.故選:B.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系:對于二次函數(shù)y=ax2+bx+c(a≠0),二次項系數(shù)a決定拋物線的開口方向和大小:當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數(shù)項c決定拋物線與y軸交點位置:拋物線與y軸交于(0,c);拋物線與x軸交點個數(shù)由△決定:△=b2﹣4ac>0時,拋物線與x軸有2個交點;△=b2﹣4ac=0時,拋物線與x軸有1個交點;△=b2﹣4ac<0時,拋物線與x軸沒有交點.2、C【解析】

過點B作BD⊥x軸于點D,易證△ACO≌△BCD(AAS),從而可求出B的坐標,進而可求出反比例函數(shù)的解析式,根據(jù)解析式與A的坐標即可得知平移的單位長度,從而求出C的對應點.【詳解】解:過點B作BD⊥x軸于點D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO與△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴設反比例函數(shù)的解析式為y=,將B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,當頂點A恰好落在該雙曲線上時,此時點A移動了個單位長度,∴C也移動了個單位長度,此時點C的對應點C′的坐標為(,0)故選:C.【點睛】本題考查反比例函數(shù)的綜合問題,涉及全等三角形的性質與判定,反比例函數(shù)的解析式,平移的性質等知識,綜合程度較高,屬于中等題型.3、B【解析】

根據(jù)折疊的性質可知AE=DE=3,然后根據(jù)勾股定理求CD的長,然后利用正弦公式進行計算即可.【詳解】解:由折疊性質可知:AE=DE=3∴CE=AC-AE=4-3=1在Rt△CED中,CD=故選:B【點睛】本題考查折疊的性質,勾股定理解直角三角形及正弦的求法,掌握公式正確計算是本題的解題關鍵.4、C【解析】

根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加;合并同類項,只把系數(shù)相加減,字母與字母的次數(shù)不變;同底數(shù)冪相除,底數(shù)不變指數(shù)相減,對各選項計算后利用排除法求解.【詳解】a2·a3﹦a5,故A項錯誤;a3+a3﹦2a3,故B項錯誤;a3+a3﹦-a6,故D項錯誤,選C.【點睛】本題考查同底數(shù)冪加減乘除及乘方,解題的關鍵是清楚運算法則.5、B【解析】試題分析:連接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是線段BD的垂直平分線,∴CD是斜邊AB的中線,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故選B.考點:作圖—基本作圖;含30度角的直角三角形.6、D【解析】

找到從上面看所得到的圖形即可,注意所有看到的棱都應表現(xiàn)在俯視圖中.【詳解】從上往下看,該幾何體的俯視圖與選項D所示視圖一致.故選D.【點睛】本題考查了簡單組合體三視圖的知識,俯視圖是從物體的上面看得到的視圖.7、B【解析】

根據(jù)同底數(shù)冪乘法、冪的乘方的運算性質計算后利用排除法求解.【詳解】A、a2?a3=a5,錯誤;B、(a2)3=a6,正確;C、不是同類項,不能合并,錯誤;D、a5+a5=2a5,錯誤;故選B.【點睛】本題綜合考查了整式運算的多個考點,包括同底數(shù)冪的乘法、冪的乘方、合并同類項,需熟練掌握且區(qū)分清楚,才不容易出錯.8、B【解析】

解:∵O是坐標原點,菱形OABC的頂點A的坐標為(3,﹣4),頂點C在x軸的正半軸上,∴OA=5,AB∥OC,∴點B的坐標為(8,﹣4),∵函數(shù)y=(k<0)的圖象經(jīng)過點B,∴﹣4=,得k=﹣32.故選B.【點睛】本題主要考查菱形的性質和用待定系數(shù)法求反函數(shù)的系數(shù),解此題的關鍵在于根據(jù)A點坐標求得OA的長,再根據(jù)菱形的性質求得B點坐標,然后用待定系數(shù)法求得反函數(shù)的系數(shù)即可.9、C【解析】

設B(,2),由翻折知OC垂直平分AA′,A′G=2EF,AG=2AF,由勾股定理得OC=,根據(jù)相似三角形或銳角三角函數(shù)可求得A′(,),根據(jù)反比例函數(shù)性質k=xy建立方程求k.【詳解】如圖,過點C作CD⊥x軸于D,過點A′作A′G⊥x軸于G,連接AA′交射線OC于E,過E作EF⊥x軸于F,設B(,2),在Rt△OCD中,OD=3,CD=2,∠ODC=90°,∴OC==,由翻折得,AA′⊥OC,A′E=AE,∴sin∠COD=,∴AE=,∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,∴∠OAE=∠OCD,∴sin∠OAE==sin∠OCD,∴EF=,∵cos∠OAE==cos∠OCD,∴,∵EF⊥x軸,A′G⊥x軸,∴EF∥A′G,∴,∴,,∴,∴A′(,),∴,∵k≠0,∴,故選C.【點睛】本題是反比例函數(shù)綜合題,常作為考試題中選擇題壓軸題,考查了反比例函數(shù)點的坐標特征、相似三角形、翻折等,解題關鍵是通過設點B的坐標,表示出點A′的坐標.10、B【解析】

原式利用算術平方根定義,以及絕對值的代數(shù)意義計算即可求出值.【詳解】原式=-2-3=-5,故選:B.【點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關鍵.11、D【解析】

根據(jù)概率是指某件事發(fā)生的可能性為多少,隨著試驗次數(shù)的增加,穩(wěn)定在某一個固定數(shù)附近,可得答案.【詳解】解:A.“明天降雨的概率是60%”表示明天下雨的可能性較大,故A不符合題意;B.“拋一枚硬幣正面朝上的概率為”表示每次拋正面朝上的概率都是,故B不符合題意;C.“彩票中獎的概率為1%”表示買100張彩票有可能中獎.故C不符合題意;D.“拋一枚正方體骰子,朝上的點數(shù)為2的概率為”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)為2”這一事件發(fā)生的概率穩(wěn)定在附近,故D符合題意;故選D【點睛】本題考查了概率的意義,正確理解概率的含義是解決本題的關鍵.12、A【解析】

根據(jù)平行線分線段成比例定理逐項分析即可.【詳解】A.∵,∴,,∴,故A正確;B.∵,∴,故B不正確;C.∵,∴,故C不正確;D.∵,∴,故D不正確;故選A.【點睛】本題考查了平行線分線段成比例定理,平行線分線段成比例定理指的是兩條直線被一組平行線所截,截得的對應線段的長度成比例.推論:平行于三角形一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形的三邊對應成比例.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、y(x+1)(x﹣1)【解析】

觀察原式x2y﹣y,找到公因式y(tǒng)后,提出公因式后發(fā)現(xiàn)x2-1符合平方差公式,利用平方差公式繼續(xù)分解可得.【詳解】解:x2y﹣y=y(tǒng)(x2﹣1)=y(tǒng)(x+1)(x﹣1).故答案為:y(x+1)(x﹣1).【點睛】本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.14、2【解析】

分式的值是1的條件是,分子為1,分母不為1.【詳解】∵3x-6=1,

∴x=2,

當x=2時,2x+1≠1.

∴當x=2時,分式的值是1.

故答案為2.【點睛】本題考查的知識點是分式為1的條件,解題關鍵是注意的是分母不能是1.15、30°【解析】

根據(jù)旋轉的性質得到∠BOD=45°,再用∠BOD減去∠AOB即可.【詳解】∵將△AOB繞點O按逆時針方向旋轉45°后,得到△COD,∴∠BOD=45°,又∵∠AOB=15°,∴∠AOD=∠BOD-∠AOB=45°-15°=30°.故答案為30°.16、<【解析】

∵≈0.62,0.62<1,∴<1;故答案為<.17、y(x-2)2【解析】

先提取公因式y(tǒng),再根據(jù)完全平方公式分解即可得.【詳解】原式==,故答案為.18、x≤1【解析】分析:根據(jù)二次根式有意義的條件解答即可.詳解:∵二次根式有意義,被開方數(shù)為非負數(shù),∴1-x≥0,解得x≤1.故答案為x≤1.點睛:本題考查了二次根式有意義的條件,熟知二次根式有意義,被開方數(shù)為非負數(shù)是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)1<x<3或x<0;(2)證明見解析.【解析】

(1)將B(3,1)代入,將B(3,1)代入,即可求出解析式;再根據(jù)圖像直接寫出不等式的解集;(2)過A作l∥x軸,過C作CG⊥l于G,過B作BH⊥l于H,△AGC∽△BHA,設B(m,)、C(n,),根據(jù)對應線段成比例即可得出mn=-9,聯(lián)立,得,根據(jù)根與系數(shù)的關系得,由此得出為定值.【詳解】解:(1)將B(3,1)代入,∴m=3,,將B(3,1)代入,∴,,∴,∴不等式的解集為1<x<3或x<0(2)過A作l∥x軸,過C作CG⊥l于G,過B作BH⊥l于H,則△AGC∽△BHA,設B(m,)、C(n,),∵,∴,∴,∴,∴mn=-9,聯(lián)立∴,∴∴,∴為定值.【點睛】此題主要考查反比例函數(shù)的圖像與性質,解題的關鍵是根據(jù)題意作出輔助線,再根據(jù)反比例函數(shù)的性質進行求解.20、(1)見解析;(2)40°.【解析】

(1)根據(jù)角平分線的性質可得出∠BCD=∠ECD,由DE∥BC可得出∠EDC=∠BCD,進而可得出∠EDC=∠ECD,再利用等角對等邊即可證出DE=CE;(2)由(1)可得出∠ECD=∠EDC=35°,進而可得出∠ACB=2∠ECD=70°,再根據(jù)等腰三角形的性質結合三角形內角和定理即可求出∠A的度數(shù).【詳解】(1)∵CD是∠ACB的平分線,∴∠BCD=∠ECD.∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.【點睛】本題考查了等腰三角形的判定與性質、平行線的性質以及角平分線.解題的關鍵是:(1)根據(jù)平行線的性質結合角平分線的性質找出∠EDC=∠ECD;(2)利用角平分線的性質結合等腰三角形的性質求出∠ACB=∠ABC=70°.21、“石鼓閣”的高AB的長度為56m.【解析】

根據(jù)題意得∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,再根據(jù)反射定律可知:∠ACB=∠ECD,則△ABC∽△EDC,根據(jù)相似三角形的性質可得=,再根據(jù)∠AHB=∠GHF,可證△ABH∽△GFH,同理得=,代入數(shù)值計算即可得出結論.【詳解】由題意可得:∠ABC=∠EDC=90°,∠ABM=∠GFH=90°,由反射定律可知:∠ACB=∠ECD,則△ABC∽△EDC,∴=,即=①,∵∠AHB=∠GHF,∴△ABH∽△GFH,∴=,即=②,聯(lián)立①②,解得:AB=56,答:“石鼓閣”的高AB的長度為56m.【點睛】本題考查了相似三角形的判定與性質,解題的關鍵是熟練的掌握相似三角形的判定與性質.22、(1)A型電器銷售單價為200元,B型電器銷售單價150元;(2)最多能采購37臺;(3)方案一:采購A型36臺B型14臺;方案二:采購A型37臺B型13臺.【解析】

(1)設A、B兩種型號電器的銷售單價分別為x元、y元,根據(jù)3臺A型號4臺B型號的電器收入1200元,5臺A型號6臺B型號的電器收入1900元,列方程組求解;(2)設采購A種型號電器a臺,則采購B種型號電器(50?a)臺,根據(jù)金額不多余7500元,列不等式求解;(3)根據(jù)A型號的電器的進價和售價,B型號的電器的進價和售價,再根據(jù)一件的利潤乘以總的件數(shù)等于總利潤列出不等式,再進行求解即可得出答案.【詳解】解:(1)設A型電器銷售單價為x元,B型電器銷售單價y元,則,解得:,答:A型電器銷售單價為200元,B型電器銷售單價150元;(2)設A型電器采購a臺,則160a+120(50?a)≤7500,解得:a≤,則最多能采購37臺;(3)設A型電器采購a臺,依題意,得:(200?160)a+(150?120)(50?a)>1850,解得:a>35,則35<a≤,∵a是正整數(shù),∴a=36或37,方案一:采購A型36臺B型14臺;方案二:采購A型37臺B型13臺.【點睛】本題考查了二元一次方程組和一元一次不等式的應用,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系和不等關系,列方程組和不等式求解.23、(1);(2)點P的坐標為;(3).【解析】

(1)利用三角形相似可求AO?OB,再由一元二次方程根與系數(shù)關系求AO?OB構造方程求n;(2)求出B、C坐標,設出點Q坐標,利用平行四邊形對角線互相平分性質,分類討論點P坐標,分別代入拋物線解析式,求出Q點坐標;(3)設出點D坐標(a,b),利用相似表示OA,再由一元二次方程根與系數(shù)關系表示OB,得到點B坐標,進而找到b與a關系,代入拋物線求a、n即可.【詳解】(1)若△ABC為直角三角形∴△AOC∽△COB∴OC2=AO?OB當y=0時,0=x2-x-n由一元二次方程根與系數(shù)關系-OA?OB=OC2n2==?2n解得n=0(舍去)或n=2∴拋物線解析式為y=;(2)由(1)當=0時解得x1=-1,x2=4∴OA=1,OB=4∴B(4,0),C(0,-2)∵拋物線對稱軸為直線x=-=?∴設點Q坐標為(,b)由平行四邊形性質可知當BQ、CP為平行四邊形對角線時,點P坐標為(,b+2)代入y=x2-x-2解得b=,則P點坐標為(,)當CQ、PB為為平行四邊形對角線時,點P坐標為(-,b-2)代入y=x2-x-2解得b=,則P坐標為(-,)綜上點P坐標為(,),(-,);(3)設點D坐標為(a,b)∵AE:ED=1:4則OE=b,OA=a∵AD∥AB∴△AEO∽△BCO∵OC=n∴∴OB=由一元二次方程根與系數(shù)關系得,∴b=a2將點A(-a,0),D(a,a2)代入y=x2-x-n解得a=6或a=0(舍去)則n=.【點睛】本題是代數(shù)幾何綜合題,考查了二次函數(shù)圖象性質、一元二次方程根與系數(shù)關系、三角形相似以及平行四邊形的性質,解答關鍵是綜合運用數(shù)形結合分類討論思想.24、解:(1)該校班級個數(shù)為4÷20%=20(個),只有2名留守兒童的班級個數(shù)為:20﹣(2+3+4+5+4)=2(個),該校平均每班留守兒童的人數(shù)為:=4(名),補圖如下:(2)由(1)得只有2名留守兒童的班級有2個,共4名學生.設A1,A2來自一個班,B1,B2來自一個班,有樹狀圖可知,共有12中等可能的情況,其中來自一個班的共有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論