2022-2023學年山東省菏澤市定陶區(qū)實驗中學初三第二次調(diào)研聯(lián)考數(shù)學試題試卷含解析_第1頁
2022-2023學年山東省菏澤市定陶區(qū)實驗中學初三第二次調(diào)研聯(lián)考數(shù)學試題試卷含解析_第2頁
2022-2023學年山東省菏澤市定陶區(qū)實驗中學初三第二次調(diào)研聯(lián)考數(shù)學試題試卷含解析_第3頁
2022-2023學年山東省菏澤市定陶區(qū)實驗中學初三第二次調(diào)研聯(lián)考數(shù)學試題試卷含解析_第4頁
2022-2023學年山東省菏澤市定陶區(qū)實驗中學初三第二次調(diào)研聯(lián)考數(shù)學試題試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年山東省菏澤市定陶區(qū)實驗中學初三第二次調(diào)研聯(lián)考數(shù)學試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖是由若干個大小相同的小正方體堆砌而成的幾何體,那么其三種視圖中面積最小的是()A.主視圖 B.俯視圖 C.左視圖 D.一樣大2.如圖,水平的講臺上放置的圓柱體筆筒和正方體粉筆盒,其左視圖是()A. B.C. D.3.如圖是本地區(qū)一種產(chǎn)品30天的銷售圖象,圖①是產(chǎn)品日銷售量y(單位:件)與時間t(單位;天)的函數(shù)關系,圖②是一件產(chǎn)品的銷售利潤z(單位:元)與時間t(單位:天)的函數(shù)關系,已知日銷售利潤=日銷售量×一件產(chǎn)品的銷售利潤,下列結論錯誤的是()A.第24天的銷售量為200件 B.第10天銷售一件產(chǎn)品的利潤是15元C.第12天與第30天這兩天的日銷售利潤相等 D.第27天的日銷售利潤是875元4.甲車行駛30千米與乙車行駛40千米所用時間相同,已知乙車每小時比甲車多行駛15千米,設甲車的速度為千米/小時,依據(jù)題意列方程正確的是()A. B. C. D.5.已知關于x的一元二次方程有兩個相等的實根,則k的值為()A. B. C.2或3 D.或6.下列四個圖形分別是四屆國際數(shù)學家大會的會標,其中屬于中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個7.拋物線y=–x2+bx+c上部分點的橫坐標x、縱坐標y的對應值如下表所示:x…–2–1012…y…04664…從上表可知,下列說法錯誤的是A.拋物線與x軸的一個交點坐標為(–2,0) B.拋物線與y軸的交點坐標為(0,6)C.拋物線的對稱軸是直線x=0 D.拋物線在對稱軸左側(cè)部分是上升的8.某學習小組做“用頻率估計概率”的實驗時,統(tǒng)計了某一結果出現(xiàn)的頻率,繪制了如下折線統(tǒng)計圖,則符合這一結果的實驗最有可能的是()A.袋中裝有大小和質(zhì)地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球B.擲一枚質(zhì)地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)C.先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面D.先后兩次擲一枚質(zhì)地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過99.如圖,在平行四邊形ABCD中,都不一定成立的是()①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.A.①和④ B.②和③ C.③和④ D.②和④10.由一些大小相同的小正方體組成的幾何體的俯視圖如圖所示,其中正方形中的數(shù)字表示在該位置上的小正方體的個數(shù),那么,這個幾何體的左視圖是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,正方形內(nèi)的陰影部分是由四個直角邊長都是1和3的直角三角形組成的,假設可以在正方形內(nèi)部隨意取點,那么這個點取在陰影部分的概率為.12.已知:如圖,AD、BE分別是△ABC的中線和角平分線,AD⊥BE,AD=BE=6,則AC的長等于______.13.如圖,五邊形是正五邊形,若,則__________.14.如圖,在平面直角坐標系中,⊙P的圓心在x軸上,且經(jīng)過點A(m,﹣3)和點B(﹣1,n),點C是第一象限圓上的任意一點,且∠ACB=45°,則⊙P的圓心的坐標是_____.15.已知拋物線y=x2上一點A,以A為頂點作拋物線C:y=x2+bx+c,點B(2,yB)為拋物線C上一點,當點A在拋物線y=x2上任意移動時,則yB的取值范圍是_________.16.在計算器上,按照下面如圖的程序進行操作:如表中的x與y分別是輸入的6個數(shù)及相應的計算結果:上面操作程序中所按的第三個鍵和第四個鍵分別是_____、_____.x﹣3﹣2﹣1012y﹣5﹣3﹣1135三、解答題(共8題,共72分)17.(8分)如圖,△ABC內(nèi)接于⊙O,∠B=600,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑.18.(8分)如圖,已知A是⊙O上一點,半徑OC的延長線與過點A的直線交于點B,OC=BC,AC=OB.求證:AB是⊙O的切線;若∠ACD=45°,OC=2,求弦CD的長.19.(8分)發(fā)現(xiàn)如圖1,在有一個“凹角∠A1A2A3”n邊形A1A2A3A4……An中(n為大于3的整數(shù)),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.驗證如圖2,在有一個“凹角∠ABC”的四邊形ABCD中,證明:∠ABC=∠A+∠C+∠D.證明3,在有一個“凹角∠ABC”的六邊形ABCDEF中,證明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如圖4,在有兩個連續(xù)“凹角A1A2A3和∠A2A3A4”的四邊形A1A2A3A4……An中(n為大于4的整數(shù)),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣)×180°.20.(8分)如圖1,三個正方形ABCD、AEMN、CEFG,其中頂點D、C、G在同一條直線上,點E是BC邊上的動點,連結AC、AM.(1)求證:△ACM∽△ABE.(2)如圖2,連結BD、DM、MF、BF,求證:四邊形BFMD是平行四邊形.(3)若正方形ABCD的面積為36,正方形CEFG的面積為4,求五邊形ABFMN的面積.21.(8分)俄羅斯世界杯足球賽期間,某商店銷售一批足球紀念冊,每本進價40元,規(guī)定銷售單價不低于44元,且獲利不高于30%.試銷售期間發(fā)現(xiàn),當銷售單價定為44元時,每天可售出300本,銷售單價每上漲1元,每天銷售量減少10本,現(xiàn)商店決定提價銷售.設每天銷售量為y本,銷售單價為x元.請直接寫出y與x之間的函數(shù)關系式和自變量x的取值范圍;當每本足球紀念冊銷售單價是多少元時,商店每天獲利2400元?將足球紀念冊銷售單價定為多少元時,商店每天銷售紀念冊獲得的利潤w元最大?最大利潤是多少元?22.(10分)如圖,已知⊙O,請用尺規(guī)做⊙O的內(nèi)接正四邊形ABCD,(保留作圖痕跡,不寫做法)23.(12分)為了提高中學生身體素質(zhì),學校開設了A:籃球、B:足球、C:跳繩、D:羽毛球四種體育活動,為了解學生對這四種體育活動的喜歡情況,在全校隨機抽取若干名學生進行問卷調(diào)查(每個被調(diào)查的對象必須選擇而且只能在四種體育活動中選擇一種),將數(shù)據(jù)進行整理并繪制成以下兩幅統(tǒng)計圖(未畫完整).這次調(diào)查中,一共調(diào)查了________名學生;請補全兩幅統(tǒng)計圖;若有3名喜歡跳繩的學生,1名喜歡足球的學生組隊外出參加一次聯(lián)誼活動,欲從中選出2人擔任組長(不分正副),求一人是喜歡跳繩、一人是喜歡足球的學生的概率.24.如圖,已知△ABC中,AB=BC=5,tan∠ABC=.求邊AC的長;設邊BC的垂直平分線與邊AB的交點為D,求的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】如圖,該幾何體主視圖是由5個小正方形組成,左視圖是由3個小正方形組成,俯視圖是由5個小正方形組成,故三種視圖面積最小的是左視圖,故選C.2、C【解析】

根據(jù)左視圖是從物體的左面看得到的視圖解答即可.【詳解】解:水平的講臺上放置的圓柱形筆筒和正方體形粉筆盒,其左視圖是一個含虛線的長方形,故選C.【點睛】本題考查的是幾何體的三視圖,左視圖是從物體的左面看得到的視圖.3、C【解析】試題解析:A、根據(jù)圖①可得第24天的銷售量為200件,故正確;B、設當0≤t≤20,一件產(chǎn)品的銷售利潤z(單位:元)與時間t(單位:天)的函數(shù)關系為z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=-x+25,當x=10時,y=-10+25=15,故正確;C、當0≤t≤24時,設產(chǎn)品日銷售量y(單位:件)與時間t(單位;天)的函數(shù)關系為y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=t+100,當t=12時,y=150,z=-12+25=13,∴第12天的日銷售利潤為;150×13=1950(元),第30天的日銷售利潤為;150×5=750(元),750≠1950,故C錯誤;D、第30天的日銷售利潤為;150×5=750(元),故正確.故選C4、C【解析】由實際問題抽象出方程(行程問題).【分析】∵甲車的速度為千米/小時,則乙甲車的速度為千米/小時∴甲車行駛30千米的時間為,乙車行駛40千米的時間為,∴根據(jù)甲車行駛30千米與乙車行駛40千米所用時間相同得.故選C.5、A【解析】

根據(jù)方程有兩個相等的實數(shù)根結合根的判別式即可得出關于k的方程,解之即可得出結論.【詳解】∵方程有兩個相等的實根,∴△=k2-4×2×3=k2-24=0,解得:k=.故選A.【點睛】本題考查了根的判別式,熟練掌握“當△=0時,方程有兩個相等的兩個實數(shù)根”是解題的關鍵.6、B【解析】

解:根據(jù)中心對稱的概念可得第一個圖形是中心對稱圖形,第二個圖形不是中心對稱圖形,第三個圖形是中心對稱圖形,第四個圖形不是中心對稱圖形,所以,中心對稱圖有2個.故選B.【點睛】本題考查中心對稱圖形的識別,掌握中心對稱圖形的概念是本題的解題關鍵.7、C【解析】當x=-2時,y=0,

∴拋物線過(-2,0),

∴拋物線與x軸的一個交點坐標為(-2,0),故A正確;

當x=0時,y=6,

∴拋物線與y軸的交點坐標為(0,6),故B正確;

當x=0和x=1時,y=6,

∴對稱軸為x=,故C錯誤;

當x<時,y隨x的增大而增大,

∴拋物線在對稱軸左側(cè)部分是上升的,故D正確;

故選C.8、D【解析】

根據(jù)統(tǒng)計圖可知,試驗結果在0.33附近波動,即其概率P≈0.33,計算四個選項的概率,約為0.33者即為正確答案.【詳解】解:根據(jù)統(tǒng)計圖可知,試驗結果在0.33附近波動,即其概率P≈0.33,A、袋中裝有大小和質(zhì)地都相同的3個紅球和2個黃球,從中隨機取一個,取到紅球的概率為,不符合題意;B、擲一枚質(zhì)地均勻的正六面體骰子,向上的面的點數(shù)是偶數(shù)的概率為,不符合題意;C、先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面的概率為,不符合題意;D、先后兩次擲一枚質(zhì)地均勻的正六面體骰子,兩次向上的面的點數(shù)之和是7或超過9的概率為,符合題意,故選D.【點睛】本題考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.9、D【解析】∵四邊形ABCD是平行四邊形,∴AO=CO,故①成立;AD∥BC,故③成立;利用排除法可得②與④不一定成立,∵當四邊形是菱形時,②和④成立.故選D.10、A【解析】從左面看,得到左邊2個正方形,中間3個正方形,右邊1個正方形.故選A.二、填空題(本大題共6個小題,每小題3分,共18分)11、.【解析】試題分析:此題是求陰影部分的面積占正方形面積的幾分之幾,即為所求概率.陰影部分的面積為:3×1÷2×4=6,因為正方形對角線形成4個等腰直角三角形,所以邊長是=,∴這個點取在陰影部分的概率為:6÷=6÷18=.考點:求隨機事件的概率.12、9【解析】試題分析:如圖,過點C作CF⊥AD交AD的延長線于點F,可得BE∥CF,易證△BGD≌△CFD,所以GD=DF,BG=CF;又因BE是△ABC的角平分線且AD⊥BE,BG是公共邊,可證得△ABG≌△DBG,所以AG=GD=3;由BE∥CF可得△AGE∽△AFC,所以,即FC=3GE;又因BE=BG+GE=3GE+GE=4GE=6,所以GE=,BG=;在Rt△AFC中,AF=AG+GD+GF=9,CF=BG=,由勾股定理可求得AC=952.考點:全等三角形的判定及性質(zhì);相似三角形的判定及性質(zhì);勾股定理.13、72【解析】分析:延長AB交于點F,根據(jù)得到∠2=∠3,根據(jù)五邊形是正五邊形得到∠FBC=72°,最后根據(jù)三角形的外角等于與它不相鄰的兩個內(nèi)角的和即可求出.詳解:延長AB交于點F,∵,∴∠2=∠3,∵五邊形是正五邊形,∴∠ABC=108°,∴∠FBC=72°,∠1-∠2=∠1-∠3=∠FBC=72°故答案為:72°.點睛:此題主要考查了平行線的性質(zhì)和正五邊形的性質(zhì),正確把握五邊形的性質(zhì)是解題關鍵.14、(2,0)【解析】【分析】作輔助線,構建三角形全等,先根據(jù)同弧所對的圓心角是圓周角的二倍得:∠APB=90°,再證明△BPE≌△PAF,根據(jù)PE=AF=3,列式可得結論.【詳解】連接PB、PA,過B作BE⊥x軸于E,過A作AF⊥x軸于F,∵A(m,﹣3)和點B(﹣1,n),∴OE=1,AF=3,∵∠ACB=45°,∴∠APB=90°,∴∠BPE+∠APF=90°,∵∠BPE+∠EBP=90°,∴∠APF=∠EBP,∵∠BEP=∠AFP=90°,PA=PB,∴△BPE≌△PAF,∴PE=AF=3,設P(a,0),∴a+1=3,a=2,∴P(2,0),故答案為(2,0).【點睛】本題考查了圓周角定理和坐標與圖形性質(zhì),三角形全等的性質(zhì)和判定,作輔助線構建三角形全等是關鍵.15、ya≥1【解析】

設點A的坐標為(m,n),由題意可知n=m1,從而可知拋物線C為y=(x-m)1+n,化簡為y=x1-1mx+1m1,將x=1代入y=x1-1mx+1m1,利用二次函數(shù)的性質(zhì)即可求出答案.【詳解】設點A的坐標為(m,n),m為全體實數(shù),

由于點A在拋物線y=x1上,

∴n=m1,

由于以A為頂點的拋物線C為y=x1+bx+c,

∴拋物線C為y=(x-m)1+n

化簡為:y=x1-1mx+m1+n=x1-1mx+1m1,

∴令x=1,

∴ya=4-4m+1m1=1(m-1)1+1≥1,

∴ya≥1,

故答案為ya≥1【點睛】本題考查了二次函數(shù)的性質(zhì),解題的關鍵是根據(jù)題意求出ya=4-4m+1m1=1(m-1)1+1.16、+,1【解析】

根據(jù)表格中數(shù)據(jù)求出x、y之間的關系,即可得出答案.【詳解】解:根據(jù)表格中數(shù)據(jù)分析可得:x、y之間的關系為:y=2x+1,則按的第三個鍵和第四個鍵應是“+”“1”.故答案為+,1.【點睛】此題考查了有理數(shù)的運算,要求同學們能熟練應用計算器,會用科學記算器進行計算.三、解答題(共8題,共72分)17、(1)見解析(2)2【解析】解:(1)證明:連接OA,∵∠B=600,∴∠AOC=2∠B=1.∵OA=OC,∴∠OAC=∠OCA=2.又∵AP=AC,∴∠P=∠ACP=2.∴∠OAP=∠AOC﹣∠P=3.∴OA⊥PA.∵OA是⊙O的半徑,∴PA是⊙O的切線.(2)在Rt△OAP中,∵∠P=2,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OA.∵PD=,∴2OA=2PD=2.∴⊙O的直徑為2..(1)連接OA,根據(jù)圓周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=2,再由AP=AC得出∠P=2,繼而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,從而得出結論.(2)利用含2的直角三角形的性質(zhì)求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直徑.18、(1)見解析;(2)+【解析】

(1)利用題中的邊的關系可求出△OAC是正三角形,然后利用角邊關系又可求出∠CAB=30°,從而求出∠OAB=90°,所以判斷出直線AB與⊙O相切;(2)作AE⊥CD于點E,由已知條件得出AC=2,再求出AE=CE,根據(jù)直角三角形的性質(zhì)就可以得到AD.【詳解】(1)直線AB是⊙O的切線,理由如下:連接OA.∵OC=BC,AC=OB,∴OC=BC=AC=OA,∴△ACO是等邊三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切線.(2)作AE⊥CD于點E.∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2.【點睛】本題考查了切線的判定、直角三角形斜邊上的中線、等腰三角形的性質(zhì)以及圓周角定理、等邊三角形的判定和性質(zhì)等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.19、(1)見解析;(2)見解析;(3)1.【解析】

(1)如圖2,延長AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答(2)如圖3,延長AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出規(guī)律即可解答【詳解】(1)如圖2,延長AB交CD于E,則∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,∴∠ABC=∠A+∠C+∠D;(2)如圖3,延長AB交CD于G,則∠ABC=∠BGC+∠C,∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;(3)如圖4,延長A2A3交A5A4于C,延長A3A2交A1An于B,則∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An),而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An)],∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠An﹣(n﹣1)×180°.故答案為1.【點睛】此題考查多邊形的內(nèi)角和外角,,解題的關鍵是熟練掌握三角形的外角的性質(zhì),屬于中考??碱}型20、(1)證明見解析;(2)證明見解析;(3)74.【解析】

(1)根據(jù)四邊形ABCD和四邊形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可證△ACM∽△ABE;(2)連結AC,由△ACM∽△ABE得∠ACM=∠B=90°,易證∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,F(xiàn)C=CE,得MF=BD,從而可以證明四邊形BFMD是平行四邊形;(3)根據(jù)S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.【詳解】(1)證明:∵四邊形ABCD和四邊形AEMN都是正方形,∴,∠CAB=∠MAC=45°,∴∠CAB-∠CAE=∠MAC-∠CAE,∴∠BAE=∠CAM,∴△ACM∽△ABE.(2)證明:連結AC因為△ACM∽△ABE,則∠ACM=∠B=90°,因為∠ACB=∠ECF=45°,所以∠ACM+∠ACB+∠ECF=180°,所以點M,C,F在同一直線上,所以∠MCD=∠BDC=45°,所以BD平行MF,又因為MC=BE,F(xiàn)C=CE,所以MF=BC=BD,所以四邊形BFMD是平行四邊形(3)S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM=62+42+(2+6)4+26=74.【點睛】本題主要考查了正方形的性質(zhì)的應用,解此題的關鍵是能正確作出輔助線,綜合性比較強,有一定的難度.21、(1)y=﹣10x+740(44≤x≤52);(2)當每本足球紀念冊銷售單價是50元時,商店每天獲利2400元;(3)將足球紀念冊銷售單價定為52元時,商店每天銷售紀念冊獲得的利潤w元最大,最大利潤是2640元.【解析】

(1)售單價每上漲1元,每天銷售量減少10本,則售單價每上漲(x﹣44)元,每天銷售量減少10(x﹣44)本,所以y=300﹣10(x﹣44),然后利用銷售單價不低于44元,且獲利不高于30%確定x的范圍;(2)利用每本的利潤乘以銷售量得到總利潤得到(x﹣40)(﹣10x+740)=2400,然后解方程后利用x的范圍確定銷售單價;(3)利用每本的利潤乘以銷售量得到總利潤得到w=(x﹣40)(﹣10x+740),再把它變形為頂點式,然后利用二次函數(shù)的性質(zhì)得到x=52時w最大,從而計算出x=52時對應的w的值即可.【詳解】(1)y=300﹣10(x﹣44),即y=﹣10x+740(44≤x≤52);(2)根據(jù)題意得(x﹣40)(﹣10x+740)=2400,解得x1=50,x2=64(舍去),答:當每本足球紀念冊銷售單價是50元時,商店每天獲利2400元;(3)w=(x﹣40)(﹣10x+740)=﹣10x2+1140x﹣29600=﹣10(x﹣57)2+2890,當x<57時,w隨x的增大而增大,而44≤x≤52,所以當x=52時,w有最大值,最大值為﹣10(52﹣57)2+2890=2640,答:將足球紀念冊銷售單價定為52元時,商店每天銷售紀念冊獲得的利潤w元最大,最大利潤是2640元.【點睛】本題考查了二次函數(shù)的應用,一元二次方程的應用,解決二次函數(shù)應用類問題時關鍵是通過題意,確定出二次函數(shù)的解析式,然后利用二次函數(shù)的性質(zhì)確定其最大值;在求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論