2023高三數(shù)學教案七篇_第1頁
2023高三數(shù)學教案七篇_第2頁
2023高三數(shù)學教案七篇_第3頁
2023高三數(shù)學教案七篇_第4頁
2023高三數(shù)學教案七篇_第5頁
已閱讀5頁,還剩7頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

第2023高三數(shù)學教案七篇2023高三數(shù)學教案七篇

2023高三數(shù)學教案都有哪些?數(shù)學的演變,可以看做是抽象的不斷發(fā)展,也可以看做是題材的延伸,而東西方文化采取了不同的角度。歐洲文明發(fā)展了幾何,中國發(fā)展了算術。下面是小編為大家?guī)淼?023高三數(shù)學教案七篇,希望大家能夠喜歡!

2023高三數(shù)學教案(篇1)

教學目標

進一步熟悉正、余弦定理內容,能熟練運用余弦定理、正弦定理解答有關問題,如判斷三角形的形狀,證明三角形中的三角恒等式.

教學重難點

教學重點:熟練運用定理.

教學難點:應用正、余弦定理進行邊角關系的相互轉化.

教學過程

一、復習準備:

1.寫出正弦定理、余弦定理及推論等公式.

2.討論各公式所求解的三角形類型.

二、講授新課:

1.教學三角形的解的討論:

①出示例1:在△ABC中,已知下列條件,解三角形.

分兩組練習→討論:解的個數(shù)情況為何會發(fā)生變化

②用如下圖示分析解的情況.(A為銳角時)

練習:在△ABC中,已知下列條件,判斷三角形的解的情況.

2.教學正弦定理與余弦定理的活用:

①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦.

分析:已知條件可以如何轉化→引入?yún)?shù)k,設三邊后利用余弦定理求角.

②出示例3:在ΔABC中,已知a=7,b=10,c=6,判斷三角形的類型.

分析:由三角形的什么知識可以判別→求角余弦,由符號進行判斷

③出示例4:已知△ABC中,試判斷△ABC的形狀.

分析:如何將邊角關系中的邊化為角→再思考:又如何將角化為邊

3.小結:三角形解的情況的討論;判斷三角形類型;邊角關系如何互化.

2023高三數(shù)學教案(篇2)

一、教學內容分析

圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數(shù)次實踐后的高度抽象。恰當?shù)乩枚x來解題,許多時候能以簡馭繁。因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。

二、學生學習情況分析

我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學語言的表達能力也略顯不足。

三、設計思想

由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情。在教學時,借助多媒體動畫,引導學生主動發(fā)現(xiàn)問題、解決問題,主動參與教學,在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學效率。

四、教學目標

1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義__問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。

2、通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

3、借助多媒體輔助教學,激發(fā)學習數(shù)學的興趣。

五、教學重點與難點:

教學重點

1、對圓錐曲線定義的理解

2、利用圓錐曲線的定義求“最值”

3、“定義法”求軌跡方程

教學難點:

巧用圓錐曲線定義__

2023高三數(shù)學教案(篇3)

一、教學過程

1.復習。

反函數(shù)的概念、反函數(shù)求法、互為反函數(shù)的函數(shù)定義域值域的關系。

求出函數(shù)y=x3的反函數(shù)。

2.新課。

先讓學生用幾何畫板畫出y=x3的圖象,學生紛紛動手,很快畫出了函數(shù)的圖象。有部分學生發(fā)出了“咦”的一聲,因為他們得到了如下的圖象(圖1):

教師在畫出上述圖象的學生中選定

生1,將他的屏幕內容通過教學系統(tǒng)放到其他同學的屏幕上,很快有學生作出反應。

生2:這是y=x3的反函數(shù)y=的圖象。

師:對,但是怎么會得到這個圖象,請大家討論。

(學生展開討論,但找不出原因。)

師:我們請生1再給大家演示一下,大家?guī)退艺以颉?/p>

(生1將他的制作過程重新重復了一次。)

生3:問題出在他選擇的次序不對。

師:哪個次序

生3:作點B前,選擇xA和xA3為B的坐標時,他先選擇xA3,后選擇xA,作出來的點的坐標為(xA3,xA),而不是(xA,xA3)。

師:是這樣嗎我們請生1再做一次。

(這次生1在做的過程當中,按xA、xA3的次序選擇,果然得到函數(shù)y=x3的圖象。)

師:看來問題確實是出在這個地方,那么請同學再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數(shù)y=的圖象呢

(學生再次陷入思考,一會兒有學生舉手。)

師:我們請生4來告訴大家。

生4:因為他這樣做,正好是將y=x3上的點B(x,y)的橫坐標x與縱坐標y交換,而y=x3的反函數(shù)也正好是將x與y交換。

師:完全正確。下面我們進一步研究y=x3的圖象及其反函數(shù)y=的圖象的.關系,同學們能不能看出這兩個函數(shù)的圖象有什么樣的關系

(多數(shù)學生回答可由y=x3的圖象得到y(tǒng)=的圖象,于是教師進一步追問。)

師:怎么由y=x3的圖象得到y(tǒng)=的圖象

生5:將y=x3的圖象上點的橫坐標與縱坐標交換,可得到y(tǒng)=的圖象。

師:將橫坐標與縱坐標互換怎么換

(學生一時未能明白教師的意思,場面一下子冷了下來,教師不得不將問題進一步明確。)

師:我其實是想問大家這兩個函數(shù)的圖象有沒有對稱關系,有的話,是什么樣的對稱關系

(學生重新開始觀察這兩個函數(shù)的圖象,一會兒有學生舉手。)

生6:我發(fā)現(xiàn)這兩個圖象應是關于某條直線對稱。

師:能說說是關于哪條直線對稱嗎

生6:我還沒找出來。

(接下來,教師引導學生利用幾何畫板找出兩函數(shù)圖象的對稱軸,畫出如下圖形,如圖2所示:)

學生通過移動點A(點B、C隨之移動)后發(fā)現(xiàn),BC的中點M在同一條直線上,這條直線就是兩函數(shù)圖象的對稱軸,在追蹤M點后,發(fā)現(xiàn)中點的軌跡是直線y=x。

生7:y=x3的圖象及其反函數(shù)y=的圖象關于直線y=x對稱。

師:這個結論有一般性嗎其他函數(shù)及其反函數(shù)的圖象,也有這種對稱關系嗎請同學們用其他函數(shù)來試一試。

(學生紛紛畫出其他函數(shù)與其反函數(shù)的圖象進行驗證,最后大家一致得出結論:函數(shù)及其反函數(shù)的圖象關于直線y=x對稱。)

還是有部分學生舉手,因為他們畫出了如下圖象(圖3):

教師巡視全班時已經(jīng)發(fā)現(xiàn)這個問題,將這個圖象傳給全班學生后,幾乎所有人都看出了問題所在:圖中函數(shù)y=x2(x∈R)沒有反函數(shù),②也不是函數(shù)的圖象。

最后教師與學生一起總結:

點(x,y)與點(y,x)關于直線y=x對稱;

函數(shù)及其反函數(shù)的圖象關于直線y=x對稱。

二、反思與點評

1.在開學初,我就教學幾何畫板4。0的用法,在教函數(shù)圖象畫法的過程當中,發(fā)現(xiàn)學生根據(jù)選定坐標作點時,不太注意選擇橫坐標與縱坐標的順序,本課設計起源于此。雖然幾何畫板4。04中,能直接根據(jù)函數(shù)解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質,所以本節(jié)課教學中,我有意選擇了幾何畫板4。0進行教學。

2.荷蘭數(shù)學教育家弗賴登塔爾認為,數(shù)學學習過程當中,可借助于生動直觀的形象來引導人們的思想過程,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學生正確理解比較抽象的概念。

計算機作為一種現(xiàn)代信息技術工具,在直觀化方面有很強的表現(xiàn)能力,如在函數(shù)的圖象、圖形變換等方面,利用計算機都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計算機,但不能達到更好地理解抽象概念,促進學生思維的目的的話,這樣的教學中,計算機最多只是一種普通的直觀工具而已。

在本節(jié)課的教學中,計算機更多的是作為學生探索發(fā)現(xiàn)的工具,學生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對稱關系,而且在更深層次上理解了反函數(shù)的概念,對反函數(shù)的存在性、反函數(shù)的求法等方面也有了更深刻的理解。

當前計算機用于中學數(shù)學的主要形式還是以輔助為主,更多的是把計算機作為一種直觀工具,有時甚至只是作為電子黑板使用,今后的發(fā)展方向應是:將計算機作為學生的認知工具,讓學生通過計算機發(fā)現(xiàn)探索,甚至利用計算機來做數(shù)學,在此過程當中更好地理解數(shù)學概念,促進數(shù)學思維,發(fā)展數(shù)學創(chuàng)新能力。

3.在引出兩個函數(shù)圖象對稱關系的時候,問題設計不甚妥當,本來是想要學生回答兩個函數(shù)圖象對稱的關系,但學生誤以為是問如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學生引入歧途。這樣的問題在今后的教學中是必須力求避免的。

2023高三數(shù)學教案(篇4)

一、復習內容

平面向量的概念及運算法則

二、復習重點

向量的概念及運算法則的運用及其用向量知識,實現(xiàn)幾何與代數(shù)之間的等價轉化。

三、具體教學過程

1.學生準備課前預習回家做作業(yè)。其具體步驟是:相應知識的系統(tǒng)梳理;典型例題的摘錄;搜集平時作業(yè),測驗作業(yè)中存在的典型錯誤;提出針性訓練的練習題;準備思考題,以及家庭作業(yè)。學生的準備可以從中選擇一項,學有余力的同學可以多選。

2.學生可以分為出題組、答題組和歸納組(每組3~4人),三個小組又可構成一個大的探究組,各小組的角色在其過程中可以互換;教師從旁引導,控制教學節(jié)奏,并有機、適時地對有爭議的問題或引起認知沖突的部分作相應的釋疑,最后選出具有代表性的題目和表達最完整的歸納展示給學生。

出題組:在教師的引導下,確立出題意圖后,可以自編或在課本、資料中尋找適當?shù)睦}。

答題組:迅速給出題目答案或解題思路步驟(由學生自己講解),同時確立該題所考察的知識點和方法,并互相討論解題過程中的易錯點和容易忽視的問題。

歸納組:對照相應的問題,歸納出解決問題的關鍵和方法及其需要注意的事項。并以書面的形式給出,可充分利用投影的方式展示給學生。

3.教學中教師按上述環(huán)節(jié)順序,讓每一環(huán)節(jié)準備相同內容,學生自己選擇一人擔任主講,其余同學組成評議組,主講講解完后,由評議組補充、完善或評價、矯正……。

4.教師控制教學節(jié)奏,并有機、適時地對有爭議的問題或引起認知沖突的部分作相應的釋疑。

5.在學生自己完成這一復習環(huán)節(jié)后,師生共同完成教師的精選題例題的講解,同樣采用啟發(fā)討論式,盡可能地讓學生自己完成問題的解答。

6.課尾教師進行點評、歸納、小結(由學生自己完成),并評選本課“主講明星”與“評議”。

四、案例分析及其反思

1.讓學生走上講臺,既為學生提供展示才華的舞臺,滿足其表現(xiàn)欲,嘗試成功感,又讓學生親歷知識掌握的構建過程。

2.由于要自己完成課前的準備作業(yè)和講解內容,迫使學生進行章節(jié)的全面復習,對知識進行系統(tǒng)整理,這一復習環(huán)節(jié),卻真正達到了學生自覺地學習,使學生由被動學習轉化為主動學習,提高學習效率。

3.組織這樣的課堂教學流程,培養(yǎng)了學生口才、組織能力、邏輯思維能力、應變能力、心理承受能力等等,促使學生的個性達到良性的發(fā)展。

4.由于改變了課堂的傳統(tǒng)座位排法,學生得到了互相幫助的機會,學習較差的學生能直接得到學有余力的同學的幫助和指導,更容易掌握和理解所學的知識,調動興趣,提高了學習能力?;突W為學生營造了一個輕松、愉快的學習氛圍。打破教師出題,學生解答的單調教學模式。通過學生自己變式,充分體現(xiàn)學生的主體性,使他們對一類問題有根本性地掌握,起到以點帶面的效果。通過以組題的形式讓學生通過有目的的聯(lián)想,探索習題之間的內在聯(lián)系,明確問題產(chǎn)生的背景,領會問題的實質,進而找到相應的解題策略,培養(yǎng)學生的思維的靈活性和廣闊性,進一步完善、深化學生的認知結構。

5.教學模式恰當,引人入勝

“探究討論式”是一種常用的教學方法。然而,本課探索“向量的應用”卻頗有難度,尤其是幾何與代數(shù)之間的問題轉化。為了突破這一難點,首先復習舊知識,預備鋪墊,接著設計簡單的幾何圖形中的代數(shù)求值問題。教師在思想方法上的點拔,思維層次上的遞進,讓學生分享自己成果的樂趣,體現(xiàn)了“學生是數(shù)學學習的主人,教師是數(shù)學學習的組織者、引領者與合作者?!钡慕虒W理念。整個教學設計,思路清楚,層次轉換自然,點撥及時,自然流暢,引人入勝。

6.體現(xiàn)先進理念,合作探索

建構主義認為:學生的學習不是被動的接受,而是一種主動的學習,一種知識的重組或重新建構的過程。因此,學習方式的轉變,對學生的學習至關重要,也是二期課改成敗的要害。本課注重學生學習方式的轉變,教者適時點撥,發(fā)現(xiàn)問題,培養(yǎng)探索精神。從輕易混淆的性質入手,讓學生發(fā)現(xiàn)問題,出現(xiàn)迷惑,接著,對向量平行充要條件的研究,培養(yǎng)了學生思維的深刻性,通過概念的辨析,使學生對向量有了更深的理解,此時推出綜合應用題,過渡自然,符合認知規(guī)律。同學探究,思維得到進一步的升華,攻克難點,培養(yǎng)了合作精神。通過展示研究成果,讓學生感到愛好盎然而布滿探索求知的愿望,學生的主體地位得到了淋漓盡致的發(fā)揮。體驗成功的喜悅,分享快樂,提高了學習的積極性。

熟知,課堂教學“以教師為主導,以學生為主體”這句話好說難做。如何落在實處,本課做了有益的嘗試。案例的設計,具有時代氣息,以問題為先導,直接引導學生進入思考的境界。教案的設計說明,體現(xiàn)了教者“以學生發(fā)展為本的教學理念”。

《數(shù)學課程標準》指出:“教師應激發(fā)學生的積極性,向學生提供充分從事數(shù)學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學知識與技能……”。這就是一次很好的機會,教師要鼓勵、引導學生敢于質疑、敢于實踐,培養(yǎng)學生主動探究問題的能力,轉變學生學習方式,即變單一的傳授方式為學生自主體驗、探究等學習方式。

復習課上都有一個突出的矛盾,那就是時間太緊,既要處理足量的題目,又要充分展示學生的思維過程,二者似乎是很難兼顧。教師可采用“焦點訪談”法較好地解決這個問題,如:例2和例2的變式1的探究,因題目是“入口寬,上手易”,但在連續(xù)探究的過程中,在兩種方法會得出兩個相反的答案這一點上擱淺受阻(這一點被稱為“焦點”,其余的則被稱為“外圍”)。這里教師不必在外圍處花精力去進行淺表性的啟發(fā)誘導,好鋼要用在刀刃上,而要在焦點處發(fā)動學生探尋突破口,通過交流“訪談”,集中學生的智慧,讓學生的思維在關鍵處閃光,能力在要害處增長,弱點在隱蔽處暴露,意志在細微處磨礪。

2023高三數(shù)學教案(篇5)

【教學目標】

1.會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。

2.能根據(jù)幾何結構特征對空間物體進行分類。

3.提高學生的觀察能力;培養(yǎng)學生的空間想象能力和抽象括能力。

【教學重難點】

教學重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。

教學難點:柱、錐、臺、球的結構特征的概括。

【教學過程】

1.情景導入

教師提出問題,引導學生觀察、舉例和相互交流,提出本節(jié)課所學內容,出示課題。

2.展示目標、檢查預習

3.合作探究、交流展示

(1)引導學生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點是什么它們的共同特點是什么

(2)組織學生分組討論,每小組選出一名同學發(fā)表本組討論結果。在此基礎上得出棱柱的主要結構特征。有兩個面互相平行;其余各面都是平行四邊形;每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

(3)提出問題:請列舉身邊的棱柱并對它們進行分類

(4)以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。

(5)讓學生觀察圓柱,并實物模型演示,概括出圓柱的概念以及相關的概念及圓柱的表示。

(6)引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。

(7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。

4.質疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。

(1)有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)

(2)棱柱的任何兩個平面都可以作為棱柱的底面嗎

(3)圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到如何旋轉

(4)棱臺與棱柱、棱錐有什么關系圓臺與圓柱、圓錐呢

(5)繞直角三角形某一邊的幾何體一定是圓錐嗎

5.典型例題

例:判斷下列語句是否正確。

⑴有一個面是多邊形,其余各面都是三角形的幾何體是棱錐。

⑵有兩個面互相平行,其余各面都是梯形,則此幾何體是棱柱。

答案AB

6.課堂檢測:

課本P8,習題1.1A組第1題。

7.歸納整理

由學生整理學習了哪些內容

2023高三數(shù)學教案(篇6)

一、教學目標

知識與技能:

理解任意角的概念(包括正角、負角、零角)與區(qū)間角的概念。

過程與方法:

會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論