2023屆廣東省茂名市重點名校初三模擬檢測試題數(shù)學(xué)試題含解析_第1頁
2023屆廣東省茂名市重點名校初三模擬檢測試題數(shù)學(xué)試題含解析_第2頁
2023屆廣東省茂名市重點名校初三模擬檢測試題數(shù)學(xué)試題含解析_第3頁
2023屆廣東省茂名市重點名校初三模擬檢測試題數(shù)學(xué)試題含解析_第4頁
2023屆廣東省茂名市重點名校初三模擬檢測試題數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023屆廣東省茂名市重點名校初三模擬檢測試題數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列命題中,正確的是()A.菱形的對角線相等B.平行四邊形既是軸對稱圖形,又是中心對稱圖形C.正方形的對角線不能相等D.正方形的對角線相等且互相垂直2.如圖,該圖形經(jīng)過折疊可以圍成一個正方體,折好以后與“靜”字相對的字是()A.著 B.沉 C.應(yīng) D.冷3.3點40分,時鐘的時針與分針的夾角為()A.140° B.130° C.120° D.110°4.我國古代數(shù)學(xué)著作《孫子算經(jīng)》中有“多人共車”問題:今有三人共車,二車空;二人共車,九人步.問人與車各幾何?其大意是:每車坐3人,兩車空出來;每車坐2人,多出9人無車坐.問人數(shù)和車數(shù)各多少?設(shè)車輛,根據(jù)題意,可列出的方程是().A. B.C. D.5.如圖1,一個扇形紙片的圓心角為90°,半徑為1.如圖2,將這張扇形紙片折疊,使點A與點O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為()A. B. C. D.6.已知關(guān)于x的方程恰有一個實根,則滿足條件的實數(shù)a的值的個數(shù)為()A.1 B.2 C.3 D.47.如圖,五邊形ABCDE中,AB∥CD,∠1、∠2、∠3分別是∠BAE、∠AED、∠EDC的外角,則∠1+∠2+∠3等于A.90° B.180° C.210° D.270°8.如圖是某個幾何體的展開圖,該幾何體是()A.三棱柱 B.三棱錐 C.圓柱 D.圓錐9.估計﹣1的值為()A.1和2之間 B.2和3之間 C.3和4之間 D.4和5之間10.如圖,已知BD與CE相交于點A,ED∥BC,AB=8,AC=12,AD=6,那么AE的長等于()A.4 B.9 C.12 D.1611.某射擊運動員練習(xí)射擊,5次成績分別是:8、9、7、8、x(單位:環(huán)).下列說法中正確的是()A.若這5次成績的中位數(shù)為8,則x=8B.若這5次成績的眾數(shù)是8,則x=8C.若這5次成績的方差為8,則x=8D.若這5次成績的平均成績是8,則x=812.若關(guān)于x的一元二次方程ax2+2x﹣5=0的兩根中有且僅有一根在0和1之間(不含0和1),則a的取值范圍是()A.a(chǎn)<3B.a(chǎn)>3C.a(chǎn)<﹣3D.a(chǎn)>﹣3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,CD是⊙O直徑,AB是弦,若CD⊥AB,∠BCD=25°,則∠AOD=_____°.14.袋中裝有一個紅球和二個黃球,它們除了顏色外都相同,隨機從中摸出一球,記錄下顏色后放回袋中,充分搖勻后,再隨機摸出一球,兩次都摸到紅球的概率是_____.15.將直尺和直角三角尺按如圖方式擺放.若,,則________.16.正方形EFGH的頂點在邊長為3的正方形ABCD邊上,若AE=x,正方形EFGH的面積為y,則y與x的函數(shù)關(guān)系式為______.17.若m是方程2x2﹣3x﹣1=0的一個根,則6m2﹣9m+2016的值為_____.18.拋物線y=﹣x2+4x﹣1的頂點坐標(biāo)為.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,AB=AC,點,在邊上,.求證:.20.(6分)如圖,?ABCD的對角線AC,BD相交于點O.E,F(xiàn)是AC上的兩點,并且AE=CF,連接DE,BF.(1)求證:△DOE≌△BOF;(2)若BD=EF,連接DE,BF.判斷四邊形EBFD的形狀,并說明理由.21.(6分)已知:如圖,一次函數(shù)與反比例函數(shù)的圖象有兩個交點和,過點作軸,垂足為點;過點作軸,垂足為點,且,連接.求,,的值;求四邊形的面積.22.(8分)如圖,拋物線與x軸交于A,B,與y軸交于點C(0,2),直線經(jīng)過點A,C.(1)求拋物線的解析式;(2)點P為直線AC上方拋物線上一動點;①連接PO,交AC于點E,求的最大值;②過點P作PF⊥AC,垂足為點F,連接PC,是否存在點P,使△PFC中的一個角等于∠CAB的2倍?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.23.(8分)計算:2sin60°﹣(π﹣2)0+(__)-1+|1﹣|.24.(10分)“足球運球”是中考體育必考項目之一.蘭州市某學(xué)校為了解今年九年級學(xué)生足球運球的掌握情況,隨機抽取部分九年級學(xué)生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進(jìn)行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)根據(jù)所給信息,解答以下問題:(1)在扇形統(tǒng)計圖中,C對應(yīng)的扇形的圓心角是_____度;(2)補全條形統(tǒng)計圖;(3)所抽取學(xué)生的足球運球測試成績的中位數(shù)會落在_____等級;(4)該校九年級有300名學(xué)生,請估計足球運球測試成績達(dá)到A級的學(xué)生有多少人?25.(10分)已知C為線段上一點,關(guān)于x的兩個方程與的解分別為線段的長,當(dāng)時,求線段的長;若C為線段的三等分點,求m的值.26.(12分)(1)問題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點M為BC邊上異于B、C的一點,以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點M為BC邊上異于B、C的一點,以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由;(3)拓展延伸:如圖③,在正方形ADBC中,AD=AC,點M為BC邊上異于B、C的一點,以AM為邊作正方形AMEF,點N為正方形AMEF的中點,連接CN,若BC=10,CN=,試求EF的長.27.(12分)如圖,點G是正方形ABCD對角線CA的延長線一點,對角線BD與AC交于點O,以線段AG為邊作一個正方形AEFG,連接EB、GD.(1)求證:EB=GD;(2)若AB=5,AG=2,求EB的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據(jù)菱形,平行四邊形,正方形的性質(zhì)定理判斷即可.【詳解】A.菱形的對角線不一定相等,A錯誤;B.平行四邊形不是軸對稱圖形,是中心對稱圖形,B錯誤;C.正方形的對角線相等,C錯誤;D.正方形的對角線相等且互相垂直,D正確;故選:D.【點睛】本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關(guān)鍵是要熟悉課本中的性質(zhì)定理.2、A【解析】

正方體的平面展開圖中,相對面的特點是中間必須間隔一個正方形,據(jù)此作答【詳解】這是一個正方體的平面展開圖,共有六個面,其中面“沉”與面“考”相對,面“著”與面“靜”相對,“冷”與面“應(yīng)”相對.故選:A【點睛】本題主要考查了利用正方體及其表面展開圖的特點解題,明確正方體的展開圖的特征是解決此題的關(guān)鍵3、B【解析】

根據(jù)時針與分針相距的份數(shù)乘以每份的度數(shù),可得答案.【詳解】解:3點40分時針與分針相距4+=份,30°×=130,故選B.【點睛】本題考查了鐘面角,確定時針與分針相距的份數(shù)是解題關(guān)鍵.4、B【解析】

根據(jù)題意,表示出兩種方式的總?cè)藬?shù),然后根據(jù)人數(shù)不變列方程即可.【詳解】根據(jù)題意可得:每車坐3人,兩車空出來,可得人數(shù)為3(x-2)人;每車坐2人,多出9人無車坐,可得人數(shù)為(2x+9)人,所以所列方程為:3(x-2)=2x+9.故選B.【點睛】此題主要考查了一元一次方程的應(yīng)用,關(guān)鍵是找到問題中的等量關(guān)系:總?cè)藬?shù)不變,列出相應(yīng)的方程即可.5、C【解析】

連接OD,根據(jù)勾股定理求出CD,根據(jù)直角三角形的性質(zhì)求出∠AOD,根據(jù)扇形面積公式、三角形面積公式計算,得到答案.【詳解】解:連接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴陰影部分的面積=,故選:C.【點睛】本題考查的是扇形面積計算、勾股定理,掌握扇形面積公式是解題的關(guān)鍵.6、C【解析】

先將原方程變形,轉(zhuǎn)化為整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一個實數(shù)根,因此,方程①的根有兩種情況:(1)方程①有兩個相等的實數(shù)根,此二等根使x(x-2)≠1;(2)方程①有兩個不等的實數(shù)根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.針對每一種情況,分別求出a的值及對應(yīng)的原方程的根.【詳解】去分母,將原方程兩邊同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情況有兩種:(1)方程①有兩個相等的實數(shù)根,即△=9﹣3×2(3﹣a)=1.解得a=.當(dāng)a=時,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.(2)方程①有兩個不等的實數(shù)根,而其中一根使原方程分母為零,即方程①有一個根為1或2.(i)當(dāng)x=1時,代入①式得3﹣a=1,即a=3.當(dāng)a=3時,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即這時方程①的另一個根是x=1.4.它不使分母為零,確是原方程的唯一根.(ii)當(dāng)x=2時,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.當(dāng)a=5時,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣.x1是增根,故x=﹣為方程的唯一實根;因此,若原分式方程只有一個實數(shù)根時,所求的a的值分別是,3,5共3個.故選C.【點睛】考查了分式方程的解法及增根問題.由于原分式方程去分母后,得到一個含有字母的一元二次方程,所以要分情況進(jìn)行討論.理解分式方程產(chǎn)生增根的原因及一元二次方程解的情況從而正確進(jìn)行分類是解題的關(guān)鍵.7、B【解析】

試題分析:如圖,如圖,過點E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故選B8、A【解析】

側(cè)面為長方形,底面為三角形,故原幾何體為三棱柱.【詳解】解:觀察圖形可知,這個幾何體是三棱柱.故本題選擇A.【點睛】會觀察圖形的特征,依據(jù)側(cè)面和底面的圖形確定該幾何體是解題的關(guān)鍵.9、C【解析】分析:根據(jù)被開方數(shù)越大算術(shù)平方根越大,可得答案.詳解:∵<<,∴1<<5,∴3<﹣1<1.故選C.點睛:本題考查了估算無理數(shù)的大小,利用被開方數(shù)越大算術(shù)平方根越大得出1<<5是解題的關(guān)鍵,又利用了不等式的性質(zhì).10、B【解析】

由于ED∥BC,可證得△ABC∽△ADE,根據(jù)相似三角形所得比例線段,即可求得AE的長.【詳解】∵ED∥BC,∴△ABC∽△ADE,∴=,∴==,即AE=9;∴AE=9.故答案選B.【點睛】本題考查的知識點是相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握相似三角形的判定與性質(zhì).11、D【解析】

根據(jù)中位數(shù)的定義判斷A;根據(jù)眾數(shù)的定義判斷B;根據(jù)方差的定義判斷C;根據(jù)平均數(shù)的定義判斷D.【詳解】A、若這5次成績的中位數(shù)為8,則x為任意實數(shù),故本選項錯誤;B、若這5次成績的眾數(shù)是8,則x為不是7與9的任意實數(shù),故本選項錯誤;C、如果x=8,則平均數(shù)為(8+9+7+8+8)=8,方差為[3×(8-8)2+(9-8)2+(7-8)2]=0.4,故本選項錯誤;D、若這5次成績的平均成績是8,則(8+9+7+8+x)=8,解得x=8,故本選項正確;

故選D.【點睛】本題考查中位數(shù)、眾數(shù)、平均數(shù)和方差:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差,它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.12、B【解析】試題分析:當(dāng)x=0時,y=-5;當(dāng)x=1時,y=a-1,函數(shù)與x軸在0和1之間有一個交點,則a-1>0,解得:a>1.考點:一元二次方程與函數(shù)二、填空題:(本大題共6個小題,每小題4分,共24分.)13、50【解析】

由CD是⊙O的直徑,弦AB⊥CD,根據(jù)垂徑定理的即可求得

=,又由圓周角定理,可得∠AOD=50°.【詳解】∵CD是⊙O的直徑,弦AB⊥CD,

∴=,

∵∠BCD=25°=,

∴∠AOD=2∠BCD=50°,

故答案為50【點睛】本題考查角度的求解,解題的關(guān)鍵是利用垂徑定理.14、【解析】

首先根據(jù)題意畫出樹狀圖,由樹狀圖求得所有等可能的結(jié)果與兩次都摸到紅球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實驗.【詳解】畫樹狀圖如下:由樹狀圖可知,共有9種等可能結(jié)果,其中兩次都摸到紅球的有1種結(jié)果,所以兩次都摸到紅球的概率是,故答案為.【點睛】此題考查的是用列表法或樹狀圖法求概率的知識.注意畫樹狀圖與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.15、80°.【解析】

由于直尺外形是矩形,根據(jù)矩形的性質(zhì)可知對邊平行,所以∠4=∠3,再根據(jù)外角的性質(zhì)即可求出結(jié)果.【詳解】解:如圖所示,依題意得:∠4=∠3,∵∠4=∠2+∠1=80°∴∠3=80°.故答案為80°.【點睛】本題考查了平行線的性質(zhì)和三角形外角的性質(zhì),掌握三角形外角的性質(zhì)是解題的關(guān)鍵.16、y=2x2﹣6x+2【解析】

由AAS證明△DHE≌△AEF,得出DE=AF=x,DH=AE=1-x,再根據(jù)勾股定理,求出EH2,即可得到y(tǒng)與x之間的函數(shù)關(guān)系式.【詳解】如圖所示:∵四邊形ABCD是邊長為1的正方形,∴∠A=∠D=20°,AD=1.∴∠1+∠2=20°,∵四邊形EFGH為正方形,∴∠HEF=20°,EH=EF.∴∠1+∠1=20°,∴∠2=∠1,在△AHE與△BEF中,∴△DHE≌△AEF(AAS),∴DE=AF=x,DH=AE=1-x,在Rt△AHE中,由勾股定理得:EH2=DE2+DH2=x2+(1-x)2=2x2-6x+2;即y=2x2-6x+2(0<x<1),故答案為y=2x2-6x+2.【點睛】本題考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理,本題難度適中,求出y與x之間的函數(shù)關(guān)系式是解題的關(guān)鍵.17、2.【解析】

把x=m代入方程,求出2m2﹣3m=2,再變形后代入,即可求出答案.【詳解】解:∵m是方程2x2﹣3x﹣2=0的一個根,∴代入得:2m2﹣3m﹣2=0,∴2m2﹣3m=2,∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,故答案為:2.【點睛】本題考查了求代數(shù)式的值和一元二次方程的解,解此題的關(guān)鍵是能求出2m2﹣3m=2.18、(2,3)【解析】試題分析:利用配方法將拋物線的解析式y(tǒng)=﹣x2+4x﹣1轉(zhuǎn)化為頂點式解析式y(tǒng)=﹣(x﹣2)2+3,然后求其頂點坐標(biāo)為:(2,3).考點:二次函數(shù)的性質(zhì)三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、見解析【解析】試題分析:證明△ABE≌△ACD即可.試題解析:法1:∵AB=AC,∴∠B=∠C,∵AD=CE,∴∠ADE=∠AED,∴△ABE≌△ACD,∴BE=CD,∴BD=CE,法2:如圖,作AF⊥BC于F,∵AB=AC,∴BF=CF,∵AD=AE,∴DF=EF,∴BF-DF=CF-EF,即BD=CE.20、(2)證明見解析;(2)四邊形EBFD是矩形.理由見解析.【解析】分析:(1)根據(jù)SAS即可證明;(2)首先證明四邊形EBFD是平行四邊形,再根據(jù)對角線相等的平行四邊形是矩形即可證明;【解答】(1)證明:∵四邊形ABCD是平行四邊形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△DEO和△BOF中,,∴△DOE≌△BOF.(2)結(jié)論:四邊形EBFD是矩形.理由:∵OD=OB,OE=OF,∴四邊形EBFD是平行四邊形,∵BD=EF,∴四邊形EBFD是矩形.點睛:本題考查平行四邊形的性質(zhì),全等三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.21、(1),,.(2)6【解析】

(1)用代入法可求解,用待定系數(shù)法求解;(2)延長,交于點,則.根據(jù)求解.【詳解】解:(1)∵點在上,∴,∵點在上,且,∴.∵過,兩點,∴,解得,∴,,.(2)如圖,延長,交于點,則.∵軸,軸,∴,,∴,,∴.∴四邊形的面積為6.【點睛】考核知識點:反比例函數(shù)和一次函數(shù)的綜合運用.數(shù)形結(jié)合分析問題是關(guān)鍵.22、(1);(2)①有最大值1;②(2,3)或(,)【解析】

(1)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得A,C點坐標(biāo),根據(jù)代定系數(shù)法,可得函數(shù)解析式;(2)①根據(jù)相似三角形的判定與性質(zhì),可得,根據(jù)平行于y軸直線上兩點間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案;②根據(jù)勾股定理的逆定理得到△ABC是以∠ACB為直角的直角三角形,取AB的中點D,求得D(,0),得到DA=DC=DB=,過P作x軸的平行線交y軸于R,交AC于G,情況一:如圖,∠PCF=2∠BAC=∠DGC+∠CDG,情況二,∠FPC=2∠BAC,解直角三角形即可得到結(jié)論.【詳解】(1)當(dāng)x=0時,y=2,即C(0,2),當(dāng)y=0時,x=4,即A(4,0),將A,C點坐標(biāo)代入函數(shù)解析式,得,解得,拋物線的解析是為;

(2)過點P向x軸做垂線,交直線AC于點M,交x軸于點N,∵直線PN∥y軸,∴△PEM~△OEC,∴把x=0代入y=-x+2,得y=2,即OC=2,設(shè)點P(x,-x2+x+2),則點M(x,-x+2),∴PM=(-x2+x+2)-(-x+2)=-x2+2x=-(x-2)2+2,∴=,∵0<x<4,∴當(dāng)x=2時,=有最大值1.②∵A(4,0),B(-1,0),C(0,2),∴AC=2,BC=,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB為直角的直角三角形,取AB的中點D,∴D(,0),∴DA=DC=DB=,∴∠CDO=2∠BAC,∴tan∠CDO=tan(2∠BAC)=,過P作x軸的平行線交y軸于R,交AC的延長線于G,情況一:如圖,∴∠PCF=2∠BAC=∠PGC+∠CPG,∴∠CPG=∠BAC,∴tan∠CPG=tan∠BAC=,即,令P(a,-a2+a+2),∴PR=a,RC=-a2+a,∴,∴a1=0(舍去),a2=2,∴xP=2,-a2+a+2=3,P(2,3)情況二,∴∠FPC=2∠BAC,∴tan∠FPC=,設(shè)FC=4k,∴PF=3k,PC=5k,∵tan∠PGC=,∴FG=6k,∴CG=2k,PG=3k,∴RC=k,RG=k,PR=3k-k=k,∴,∴a1=0(舍去),a2=,xP=,-a2+a+2=,即P(,),綜上所述:P點坐標(biāo)是(2,3)或(,).【點睛】本題考查了二次函數(shù)綜合題,解(1)的關(guān)鍵是待定系數(shù)法;解(2)的關(guān)鍵是利用相似三角形的判定與性質(zhì)得出,又利用了二次函數(shù)的性質(zhì);解(3)的關(guān)鍵是利用解直角三角形,要分類討論,以防遺漏.23、2+1【解析】

根據(jù)特殊角的三角函數(shù)值、零指數(shù)冪的性質(zhì)、負(fù)指數(shù)冪的性質(zhì)以及絕對值的性質(zhì)分別化簡各項后,再根據(jù)實數(shù)的運算法則計算即可求解.【詳解】原式=-1+3+=-1+3+=2+1.【點睛】本題主要考查了實數(shù)運算,根據(jù)特殊角的三角函數(shù)值、零指數(shù)冪的性質(zhì)、負(fù)指數(shù)冪的性質(zhì)以及絕對值的性質(zhì)正確化簡各數(shù)是解題關(guān)鍵.24、(1)117;(2)答案見圖;(3)B;(4)30.【解析】

(1)先根據(jù)B等級人數(shù)及其百分比求得總?cè)藬?shù),總?cè)藬?shù)減去其他等級人數(shù)求得C等級人數(shù),繼而用360°乘以C等級人數(shù)所占比例即可得;(2)根據(jù)以上所求結(jié)果即可補全圖形;(3)根據(jù)中位數(shù)的定義求解可得;(4)總?cè)藬?shù)乘以樣本中A等級人數(shù)所占比例可得.【詳解】(1)∵總?cè)藬?shù)為18÷45%=40人,∴C等級人數(shù)為40﹣(4+18+5)=13人,則C對應(yīng)的扇形的圓心角是360°×1340故答案為:117;(2)補全條形圖如下:(3)因為共有40個數(shù)據(jù),其中位數(shù)是第20、21個數(shù)據(jù)的平均數(shù),而第20、21個數(shù)據(jù)均落在B等級,所以所抽取學(xué)生的足球運球測試成績的中位數(shù)會落在B等級,故答案為:B.(4)估計足球運球測試成績達(dá)到A級的學(xué)生有300×440【點睛】本題考查了條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.25、(1);(2)或1.【解析】

(1)把m=2代入兩個方程,解方程即可求出AC、BC的長,由C為線段上一點即可得AB的長;(2)分別解兩個方程可得,,根據(jù)為線段的三等分點分別討論為線段靠近點的三等分點和為線段靠近點的三等分點兩種情況,列關(guān)于m的方程即可求出m的值.【詳解】(1)當(dāng)時,有,,由方程,解得,即.由方程,解得,即.因為為線段上一點,所以.(2)解方程,得,即.解方程,得,即.①當(dāng)為線段靠近點的三等分點時,則,即,解得.②當(dāng)為線段靠近點的三等分點時,則,即,解得.綜上可得,或1.【點睛】本題考查一元一次方程的幾何應(yīng)用,注意討論C點的位置,避免漏解是解題關(guān)鍵.26、(1)NC∥AB;理由見解析;(2)∠ABC=∠ACN;理由見解析;(3);【解析】

(1)根據(jù)△ABC,△AMN為等邊三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°從而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,證明△BAM≌△CAN,即可得到BM=CN.

(2)根據(jù)△ABC,△AMN為等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根據(jù)相似三角形的性質(zhì)得到,利用等腰三角形的性質(zhì)得到∠BAC=∠MAN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;

(3)如圖3,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45°,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論