版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.a、b互為相反數(shù),則下列成立的是()A.ab=1 B.a+b=0 C.a=b D.=-12.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A.等邊三角形 B.菱形 C.平行四邊形 D.正五邊形3.如圖,在△ABC中,AB=AC,點D是邊AC上一點,BC=BD=AD,則∠A的大小是().A.36° B.54° C.72° D.30°4.﹣2018的相反數(shù)是()A.﹣2018 B.2018 C.±2018 D.﹣5.如圖,A,B,C,D,E,G,H,M,N都是方格紙中的格點(即小正方形的頂點),要使△DEF與△ABC相似,則點F應是G,H,M,N四點中的()A.H或N B.G或H C.M或N D.G或M6.已知二次函數(shù),當自變量取時,其相應的函數(shù)值小于0,則下列結論正確的是()A.取時的函數(shù)值小于0B.取時的函數(shù)值大于0C.取時的函數(shù)值等于0D.取時函數(shù)值與0的大小關系不確定7.我國第一艘航母“遼寧艦”最大排水量為67500噸,用科學記數(shù)法表示這個數(shù)字是A.6.75×103噸 B.67.5×103噸 C.6.75×104噸 D.6.75×105噸8.如圖數(shù)軸的A、B、C三點所表示的數(shù)分別為a、b、c.若|a﹣b|=3,|b﹣c|=5,且原點O與A、B的距離分別為4、1,則關于O的位置,下列敘述何者正確?()A.在A的左邊 B.介于A、B之間C.介于B、C之間 D.在C的右邊9.老師在微信群發(fā)了這樣一個圖:以線段AB為邊作正五邊形ABCDE和正三角形ABG,連接AC、DG,交點為F,下列四位同學的說法不正確的是()A.甲 B.乙 C.丙 D.丁10.函數(shù)的圖象上有兩點,,若,則()A. B. C. D.、的大小不確定11.一組數(shù)據(jù)1,2,3,3,4,1.若添加一個數(shù)據(jù)3,則下列統(tǒng)計量中,發(fā)生變化的是()A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差12.估計的值在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,AB,AC分別為⊙O的內接正六邊形,內接正方形的一邊,BC是圓內接n邊形的一邊,則n等于_____.14.如圖,已知圓柱底面的周長為,圓柱高為,在圓柱的側面上,過點和點嵌有一圈金屬絲,則這圈金屬絲的周長最小為______.15.觀察如圖中的數(shù)列排放順序,根據(jù)其規(guī)律猜想:第10行第8個數(shù)應該是_____.16.李明早上騎自行車上學,中途因道路施工推車步行了一段路,到學校共用時15分鐘.如果他騎自行車的平均速度是每分鐘250米,推車步行的平均速度是每分鐘80米,他家離學校的路程是2900米,設他推車步行的時間為x分鐘,那么可列出的方程是_____________.17.如下圖,在直徑AB的半圓O中,弦AC、BD相交于點E,EC=2,BE=1.則cos∠BEC=________.18.如圖,在矩形ABCD中,E是AD邊的中點,,垂足為點F,連接DF,分析下列四個結論:∽;;;其中正確的結論有______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,以△ABC的邊AB為直徑的⊙O與邊AC相交于點D,BC是⊙O的切線,E為BC的中點,連接AE、DE.求證:DE是⊙O的切線;設△CDE的面積為S1,四邊形ABED的面積為S1.若S1=5S1,求tan∠BAC的值;在(1)的條件下,若AE=3,求⊙O的半徑長.20.(6分)在同一副撲克牌中取出6張撲克牌,分別是黑桃2、4、6,紅心6、7、8.將撲克牌背面朝上分別放在甲、乙兩張桌面上,先從甲桌面上任意摸出一張黑桃,再從乙桌面上任意摸出一張紅心.表示出所有可能出現(xiàn)的結果;小黃和小石做游戲,制定了兩個游戲規(guī)則:規(guī)則1:若兩次摸出的撲克牌中,至少有一張是“6”,小黃贏;否則,小石贏.規(guī)則2:若摸出的紅心牌點數(shù)是黑桃牌點數(shù)的整數(shù)倍時,小黃贏;否則,小石贏.小黃想要在游戲中獲勝,會選擇哪一條規(guī)則,并說明理由.21.(6分)某農戶生產經銷一種農產品,已知這種產品的成本價為每千克20元,市場調查發(fā)現(xiàn),該產品每天的銷售量y(千克)與銷售價x(元/千克)有如下關系:y=﹣2x+1.設這種產品每天的銷售利潤為W元.(1)該農戶想要每天獲得150元得銷售利潤,銷售價應定為每千克多少元?(2)如果物價部門規(guī)定這種農產品的銷售價不高于每千克28元,銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?22.(8分)如圖,⊙O是△ABC的外接圓,AB為直徑,OD∥BC交⊙O于點D,交AC于點E,連接AD、BD、CD.(1)求證:AD=CD;(2)若AB=10,OE=3,求tan∠DBC的值.23.(8分)由我國完全自主設計、自主建造的首艘國產航母于2018年5月成功完成第一次海上試驗任務.如圖,航母由西向東航行,到達處時,測得小島位于它的北偏東方向,且與航母相距80海里,再航行一段時間后到達B處,測得小島位于它的北偏東方向.如果航母繼續(xù)航行至小島的正南方向的處,求還需航行的距離的長.24.(10分)小明遇到這樣一個問題:已知:.求證:.經過思考,小明的證明過程如下:∵,∴.∴.接下來,小明想:若把帶入一元二次方程(a0),恰好得到.這說明一元二次方程有根,且一個根是.所以,根據(jù)一元二次方程根的判別式的知識易證:.根據(jù)上面的解題經驗,小明模仿上面的題目自己編了一道類似的題目:已知:.求證:.請你參考上面的方法,寫出小明所編題目的證明過程.25.(10分)在矩形ABCD中,兩條對角線相交于O,∠AOB=60°,AB=2,求AD的長.26.(12分)M中學為創(chuàng)建園林學校,購買了若干桂花樹苗,計劃把迎賓大道的一側全部栽上桂花樹(兩端必須各栽一棵),并且每兩棵樹的間隔相等,如果每隔5米栽1棵,則樹苗缺11棵;如果每隔6米栽1棵,則樹苗正好用完,求購買了桂花樹苗多少棵?27.(12分)如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標為(m,n)(m<0,n>0),E點在邊BC上,F(xiàn)點在邊OA上.將矩形OABC沿EF折疊,點B正好與點O重合,雙曲線y=k(1)若m=-8,n=4,直接寫出E、F的坐標;(2)若直線EF的解析式為y=3(3)若雙曲線y=k
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
依據(jù)相反數(shù)的概念及性質即可得.【詳解】因為a、b互為相反數(shù),所以a+b=1,故選B.【點睛】此題主要考查相反數(shù)的概念及性質.相反數(shù)的定義:只有符號不同的兩個數(shù)互為相反數(shù),1的相反數(shù)是1.2、B【解析】
在平面內,如果一個圖形沿一條直線對折,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形;在平面內一個圖形繞某個點旋轉180°,如果旋轉前后的圖形能互相重合,那么這個圖形叫做中心對稱圖形,分別判斷各選項即可解答.【詳解】解:A、等邊三角形是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、菱形是軸對稱圖形,也是中心對稱圖形,故此選項正確;C、平行四邊形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;D、正五邊形是軸對稱圖形,不是中心對稱圖形,故此選項錯誤.故選:B.【點睛】本題考查了軸對稱圖形和中心對稱圖形的定義,熟練掌握是解題的關鍵.3、A【解析】
由BD=BC=AD可知,△ABD,△BCD為等腰三角形,設∠A=∠ABD=x,則∠C=∠CDB=2x,又由AB=AC可知,△ABC為等腰三角形,則∠ABC=∠C=2x.在△ABC中,用內角和定理列方程求解.【詳解】解:∵BD=BC=AD,∴△ABD,△BCD為等腰三角形,設∠A=∠ABD=x,則∠C=∠CDB=2x.又∵AB=AC,∴△ABC為等腰三角形,∴∠ABC=∠C=2x.在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.故選A.【點睛】本題考查了等腰三角形的性質.關鍵是利用等腰三角形的底角相等,外角的性質,內角和定理,列方程求解.4、B【解析】分析:只有符號不同的兩個數(shù)叫做互為相反數(shù).詳解:-1的相反數(shù)是1.故選:B.點睛:本題主要考查的是相反數(shù)的定義,掌握相反數(shù)的定義是解題的關鍵.5、C【解析】
根據(jù)兩三角形三條邊對應成比例,兩三角形相似進行解答【詳解】設小正方形的邊長為1,則△ABC的各邊分別為3、、,只能F是M或N時,其各邊是6、2,2.與△ABC各邊對應成比例,故選C【點睛】本題考查了相似三角形的判定,相似三角形對應邊成比例是解題的關鍵6、B【解析】
畫出函數(shù)圖象,利用圖象法解決問題即可;【詳解】由題意,函數(shù)的圖象為:∵拋物線的對稱軸x=,設拋物線與x軸交于點A、B,∴AB<1,∵x取m時,其相應的函數(shù)值小于0,∴觀察圖象可知,x=m-1在點A的左側,x=m-1時,y>0,故選B.【點睛】本題考查二次函數(shù)圖象上的點的坐標特征,解題的關鍵是學會利用函數(shù)圖象解決問題,體現(xiàn)了數(shù)形結合的思想.7、C【解析】試題分析:根據(jù)科學記數(shù)法的定義,科學記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數(shù)是大于或等于1還是小于1.當該數(shù)大于或等于1時,n為它的整數(shù)位數(shù)減1;當該數(shù)小于1時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點前的1個0).67500一共5位,從而67500=6.75×2.故選C.8、C【解析】分析:由A、B、C三點表示的數(shù)之間的關系結合三點在數(shù)軸上的位置即可得出b=a+3,c=b+5,再根據(jù)原點O與A、B的距離分別為1、1,即可得出a=±1、b=±1,結合a、b、c間的關系即可求出a、b、c的值,由此即可得出結論.解析:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原點O與A、B的距離分別為1、1,∴a=±1,b=±1,∵b=a+3,∴a=﹣1,b=﹣1,∵c=b+5,∴c=1.∴點O介于B、C點之間.故選C.點睛:本題考查了數(shù)值以及絕對值,解題的關鍵是確定a、b、c的值.本題屬于基礎題,難度不大,解決該題型題目時,根據(jù)數(shù)軸上點的位置關系分別找出各點代表的數(shù)是關鍵.9、B【解析】
利用對稱性可知直線DG是正五邊形ABCDE和正三角形ABG的對稱軸,再利用正五邊形、等邊三角形的性質一一判斷即可;【詳解】∵五邊形ABCDE是正五邊形,△ABG是等邊三角形,∴直線DG是正五邊形ABCDE和正三角形ABG的對稱軸,∴DG垂直平分線段AB,∵∠BCD=∠BAE=∠EDC=108°,∴∠BCA=∠BAC=36°,∴∠DCA=72°,∴∠CDE+∠DCA=180°,∴DE∥AC,∴∠CDF=∠EDF=∠CFD=72°,∴△CDF是等腰三角形.故丁、甲、丙正確.故選B.【點睛】本題考查正多邊形的性質、等邊三角形的性質、軸對稱圖形的性質等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.10、A【解析】
根據(jù)x1、x1與對稱軸的大小關系,判斷y1、y1的大小關系.【詳解】解:∵y=-1x1-8x+m,∴此函數(shù)的對稱軸為:x=-=-=-1,∵x1<x1<-1,兩點都在對稱軸左側,a<0,∴對稱軸左側y隨x的增大而增大,∴y1<y1.故選A.【點睛】此題主要考查了函數(shù)的對稱軸求法和函數(shù)的單調性,利用二次函數(shù)的增減性解題時,利用對稱軸得出是解題關鍵.11、D【解析】A.∵原平均數(shù)是:(1+2+3+3+4+1)÷6=3;添加一個數(shù)據(jù)3后的平均數(shù)是:(1+2+3+3+4+1+3)÷7=3;∴平均數(shù)不發(fā)生變化.B.∵原眾數(shù)是:3;添加一個數(shù)據(jù)3后的眾數(shù)是:3;∴眾數(shù)不發(fā)生變化;C.∵原中位數(shù)是:3;添加一個數(shù)據(jù)3后的中位數(shù)是:3;∴中位數(shù)不發(fā)生變化;D.∵原方差是:;添加一個數(shù)據(jù)3后的方差是:;∴方差發(fā)生了變化.故選D.點睛:本題主要考查的是眾數(shù)、中位數(shù)、方差、平均數(shù)的,熟練掌握相關概念和公式是解題的關鍵.12、D【解析】
尋找小于26的最大平方數(shù)和大于26的最小平方數(shù)即可.【詳解】解:小于26的最大平方數(shù)為25,大于26的最小平方數(shù)為36,故,即:,故選擇D.【點睛】本題考查了二次根式的相關定義.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、12【解析】連接AO,BO,CO,如圖所示:∵AB、AC分別為⊙O的內接正六邊形、內接正方形的一邊,∴∠AOB==60°,∠AOC==90°,∴∠BOC=30°,∴n==12,故答案為12.14、【解析】
要求絲線的長,需將圓柱的側面展開,進而根據(jù)“兩點之間線段最短”得出結果,在求線段長時,根據(jù)勾股定理計算即可.【詳解】解:如圖,把圓柱的側面展開,得到矩形,則這圈金屬絲的周長最小為2AC的長度.
∵圓柱底面的周長為4dm,圓柱高為2dm,
∴AB=2dm,BC=BC′=2dm,
∴AC2=22+22=8,
∴AC=2dm.
∴這圈金屬絲的周長最小為2AC=4dm.
故答案為:4dm【點睛】本題考查了平面展開-最短路徑問題,圓柱的側面展開圖是一個矩形,此矩形的長等于圓柱底面周長,高等于圓柱的高,本題把圓柱的側面展開成矩形,“化曲面為平面”是解題的關鍵.15、1【解析】
由n行有n個數(shù),可得出第10行第8個數(shù)為第1個數(shù),結合奇數(shù)為正偶數(shù)為負,即可求出結論.【詳解】解:第1行1個數(shù),第2行2個數(shù),第3行3個數(shù),…,∴第9行9個數(shù),∴第10行第8個數(shù)為第1+2+3+…+9+8=1個數(shù).又∵第2n﹣1個數(shù)為2n﹣1,第2n個數(shù)為﹣2n,∴第10行第8個數(shù)應該是1.故答案為:1.【點睛】本題考查了規(guī)律型中數(shù)字的變化類,根據(jù)數(shù)的變化找出變化規(guī)律是解題的關鍵.16、【解析】分析:根據(jù)題意把李明步行和騎車各自所走路程表達出來,再結合步行和騎車所走總里程為2900米,列出方程即可.詳解:設他推車步行的時間為x分鐘,根據(jù)題意可得:80x+250(15-x)=2900.故答案為80x+250(15-x)=2900.點睛:弄清本題中的等量關系:李明推車步行的路程+李明騎車行駛的路程=2900是解題的關鍵.17、【解析】分析:連接BC,則∠BCE=90°,由余弦的定義求解.詳解:連接BC,根據(jù)圓周角定理得,∠BCE=90°,所以cos∠BEC=.故答案為.點睛:本題考查了圓周角定理的余弦的定義,求一個銳角的余弦時,需要把這個銳角放到直角三角形中,再根據(jù)余弦的定義求解,而圓中直徑所對的圓周角是直角.18、【解析】
①證明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②由AD∥BC,推出△AEF∽△CBF,得到,由AE=AD=BC,得到,即CF=2AF;③作DM∥EB交BC于M,交AC于N,證明DM垂直平分CF,即可證明;④設AE=a,AB=b,則AD=2a,根據(jù)△BAE∽△ADC,得到,即b=a,可得tan∠CAD=.【詳解】如圖,過D作DM∥BE交AC于N,∵四邊形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于點F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正確;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴,即CF=2AF,∴CF=2AF,故②正確;作DM∥EB交BC于M,交AC于N,∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正確;設AE=a,AB=b,則AD=2a,由△BAE∽△ADC,∴,即b=a,∴tan∠CAD=,故④錯誤;故答案為:①②③.【點睛】本題主要考查了相似三角形的判定和性質,矩形的性質,圖形面積的計算以及解直角三角形的綜合應用,正確的作出輔助線構造平行四邊形是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(1)tan∠BAC=;(3)⊙O的半徑=1.【解析】
(1)連接DO,由圓周角定理就可以得出∠ADB=90°,可以得出∠CDB=90°,根據(jù)E為BC的中點可以得出DE=BE,就有∠EDB=∠EBD,OD=OB可以得出∠ODB=∠OBD,由等式的性質就可以得出∠ODE=90°就可以得出結論.(1)由S1=5S1可得△ADB的面積是△CDE面積的4倍,可求得AD:CD=1:1,可得.則tan∠BAC的值可求;(3)由(1)的關系即可知,在Rt△AEB中,由勾股定理即可求AB的長,從而求⊙O的半徑.【詳解】解:(1)連接OD,∴OD=OB∴∠ODB=∠OBD.∵AB是直徑,∴∠ADB=90°,∴∠CDB=90°.∵E為BC的中點,∴DE=BE,∴∠EDB=∠EBD,∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.∵BC是以AB為直徑的⊙O的切線,∴AB⊥BC,∴∠EBO=90°,∴∠ODE=90°,∴DE是⊙O的切線;(1)∵S1=5S1∴S△ADB=1S△CDB∴∵△BDC∽△ADB∴∴DB1=AD?DC∴∴tan∠BAC==.(3)∵tan∠BAC=∴,得BC=AB∵E為BC的中點∴BE=AB∵AE=3,∴在Rt△AEB中,由勾股定理得,解得AB=4故⊙O的半徑R=AB=1.【點睛】本題考查了圓周角定理的運用,直角三角形的性質的運用,等腰三角形的性質的運用,切線的判定定理的運用,勾股定理的運用,相似三角形的判定和性質,解答時正確添加輔助線是關鍵.20、(1):,,,,,,,,共9種;(2)小黃要在游戲中獲勝,小黃會選擇規(guī)則1,理由見解析【解析】
(1)利用列舉法,列舉所有的可能情況即可;
(2)分別求出至少有一張是“6”和摸出的紅心牌點數(shù)是黑桃牌點數(shù)的整數(shù)倍時的概率,進行選擇即可.【詳解】(1)所有可能出現(xiàn)的結果如下:,,,,,,,,共9種;(1)摸牌的所有可能結果總數(shù)為9,至少有一張是6的有5種可能,∴在規(guī)劃1中,(小黃贏);紅心牌點數(shù)是黑桃牌點數(shù)的整倍數(shù)有4種可能,∴在規(guī)劃2中,(小黃贏).∵,∴小黃要在游戲中獲勝,小黃會選擇規(guī)則1.【點睛】考查列舉法以及概率的計算,明確概率的意義是解題的關鍵,概率等于所求情況數(shù)與總情況數(shù)的比.21、(1)該農戶想要每天獲得150元得銷售利潤,銷售價應定為每千克25元或35元;(2)192元.【解析】
(1)直接利用每件利潤×銷量=總利潤進而得出等式求出答案;(2)直接利用每件利潤×銷量=總利潤進而得出函數(shù)關系式,利用二次函數(shù)增減性求出答案.【詳解】(1)根據(jù)題意得:(x﹣20)(﹣2x+1)=150,解得:x1=25,x2=35,答:該農戶想要每天獲得150元得銷售利潤,銷售價應定為每千克25元或35元;(2)由題意得:W=(x﹣20)(﹣2x+1)=﹣2(x﹣30)2+200,∵a=﹣2,∴拋物線開口向下,當x<30時,y隨x的增大而增大,又由于這種農產品的銷售價不高于每千克28元∴當x=28時,W最大=﹣2×(28﹣30)2+200=192(元).∴銷售價定為每千克28元時,每天的銷售利潤最大,最大利潤是192元.【點睛】此題主要考查了一元二次方程的應用以及二次函數(shù)的應用,正確應用二次函數(shù)增減性是解題關鍵.22、(1)見解析;(2)tan∠DBC=.【解析】
(1)先利用圓周角定理得到∠ACB=90°,再利用平行線的性質得∠AEO=90°,則根據(jù)垂徑定理得到,從而有AD=CD;(2)先在Rt△OAE中利用勾股定理計算出AE,則根據(jù)正切的定義得到tan∠DAE的值,然后根據(jù)圓周角定理得到∠DAC=∠DBC,從而可確定tan∠DBC的值.【詳解】(1)證明:∵AB為直徑,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OE⊥AC,∴,∴AD=CD;(2)解:∵AB=10,∴OA=OD=5,∴DE=OD﹣OE=5﹣3=2,在Rt△OAE中,AE==4,∴tan∠DAE=,∵∠DAC=∠DBC,∴tan∠DBC=.【點睛】垂徑定理及圓周角定理是本題的考點,熟練掌握垂徑定理及圓周角定理是解題的關鍵.23、還需要航行的距離的長為20.4海里.【解析】分析:根據(jù)題意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD中,由三角函數(shù)得出CD=27.2海里,在直角三角形BCD中,得出BD,即可得出答案.詳解:由題知:,,.在中,,,(海里).在中,,,(海里).答:還需要航行的距離的長為20.4海里.點睛:此題考查了解直角三角形的應用-方向角問題,三角函數(shù)的應用;求出CD的長度是解決問題的關鍵.24、證明見解析【解析】解:∵,∴.∴.∴是一元二次方程的根.∴,∴.25、【解析】試題分析:由矩形的對角線相等且互相平分可得:OA=OB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024柜臺使用及租賃權協(xié)議版A版
- 2024年特色肉制品連鎖加盟合作合同3篇
- 2025年度電子圖書銷售與版權合作協(xié)議3篇
- 卷5-高考化學【名校地市好題必刷】全真模擬卷(廣東卷專用)第二輯(原卷版)
- 小學數(shù)學奧數(shù)與人工智能的結合
- 二零二五年度新型行業(yè)勞動合同范本定制2篇
- 2025年度藝人經紀合同:某演員的經紀代理3篇
- 2024版宣紙購銷合同:藝術品交易中的風險管理
- 2024年特惠:醫(yī)療設備租賃與購買協(xié)議
- 小學數(shù)學教材中的圖形內容分析
- 2024年新奧集團股份有限公司招聘筆試參考題庫含答案解析
- 觸發(fā)點療法:精準解決身體疼痛的肌筋膜按壓療法
- 工作述職評分表
- 新疆大學新疆數(shù)字經濟研究院:2023新疆平臺經濟發(fā)展調研報告
- 酒店預訂確認函
- 小學課愛國主義教育教案
- 會計師事務所審計工作底稿
- 內科抗菌藥物合理使用優(yōu)秀課件
- 觸摸一體機整機檢驗標準?1.0
- 關于人員的處置方案
- 2023年社區(qū)體育研究報告5篇
評論
0/150
提交評論