




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如果一次函數y=kx+b(k、b是常數,k≠0)的圖象經過第一、二、四象限,那么k、b應滿足的條件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<02.如圖,在平行四邊形ABCD中,F是邊AD上的一點,射線CF和BA的延長線交于點E,如果,那么的值是()A. B. C. D.3.要整齊地栽一行樹,只要確定兩端的樹坑的位置,就能確定這一行樹坑所在的直線,這里用到的數學知識是()A.兩點之間的所有連線中,線段最短B.經過兩點有一條直線,并且只有一條直線C.直線外一點與直線上各點連接的所有線段中,垂線段最短D.經過一點有且只有一條直線與已知直線垂直4.如圖,平行四邊形ABCD中,E為BC邊上一點,以AE為邊作正方形AEFG,若,,則的度數是A. B. C. D.5.把6800000,用科學記數法表示為()A.6.8×105 B.6.8×106 C.6.8×107 D.6.8×1086.點P(﹣2,5)關于y軸對稱的點的坐標為()A.(2,﹣5) B.(5,﹣2) C.(﹣2,﹣5) D.(2,5)7.一副直角三角板如圖放置,其中,,,點F在CB的延長線上若,則等于()A.35° B.25° C.30° D.15°8.如圖,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠19.在△ABC中,∠C=90°,AC=9,sinB=,則AB=(
)A.15
B.12
C.9
D.610.如圖,A(4,0),B(1,3),以OA、OB為邊作□OACB,反比例函數(k≠0)的圖象經過點C.則下列結論不正確的是()A.□OACB的面積為12B.若y<3,則x>5C.將□OACB向上平移12個單位長度,點B落在反比例函數的圖象上.D.將□OACB繞點O旋轉180°,點C的對應點落在反比例函數圖象的另一分支上.11.如圖,A、B、C是⊙O上的三點,∠B=75°,則∠AOC的度數是()A.150° B.140° C.130° D.120°12.若一個多邊形的內角和為360°,則這個多邊形的邊數是(
)A.3
B.4
C.5
D.6二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在平面直角坐標系xOy中,△DEF可以看作是△ABC經過若干次圖形的變化(平移、軸對稱、旋轉)得到的,寫出一種由△ABC得到△DEF的過程:_____.14.如果點、是二次函數是常數圖象上的兩點,那么______填“”、“”或“”15.觀察下列一組數:,它們是按一定規(guī)律排列的,那么這一組數的第n個數是_____.16.有一枚材質均勻的正方體骰子,它的六個面上分別有1點、2點、…、6點的標記,擲一次骰子,向上的一面出現的點數是素數的概率是_____.17.如圖,小軍、小珠之間的距離為2.7m,他們在同一盞路燈下的影長分別為1.8m,1.5m,已知小軍、小珠的身高分別為1.8m,1.5m,則路燈的高為____m.18.如果m,n互為相反數,那么|m+n﹣2016|=___________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知頂點為A的拋物線y=a(x-)2-2經過點B(-,2),點C(,2).(1)求拋物線的表達式;(2)如圖1,直線AB與x軸相交于點M,與y軸相交于點E,拋物線與y軸相交于點F,在直線AB上有一點P,若∠OPM=∠MAF,求△POE的面積;(3)如圖2,點Q是折線A-B-C上一點,過點Q作QN∥y軸,過點E作EN∥x軸,直線QN與直線EN相交于點N,連接QE,將△QEN沿QE翻折得到△QEN′,若點N′落在x軸上,請直接寫出Q點的坐標.20.(6分)用你發(fā)現的規(guī)律解答下列問題.┅┅計算.探究.(用含有的式子表示)若的值為,求的值.21.(6分)如圖,AB為⊙O的直徑,C為⊙O上一點,∠ABC的平分線交⊙O于點D,DE⊥BC于點E.試判斷DE與⊙O的位置關系,并說明理由;過點D作DF⊥AB于點F,若BE=3,DF=3,求圖中陰影部分的面積.22.(8分)如圖,四邊形ABCD內接于⊙O,BD是⊙O的直徑,AE⊥CD于點E,DA平分∠BDE.(1)求證:AE是⊙O的切線;(2)如果AB=4,AE=2,求⊙O的半徑.23.(8分)小明對,,,四個中小型超市的女工人數進行了統(tǒng)計,并繪制了下面的統(tǒng)計圖表,已知超市有女工20人.所有超市女工占比統(tǒng)計表超市女工人數占比62.5%62.5%50%75%超市共有員工多少人?超市有女工多少人?若從這些女工中隨機選出一個,求正好是超市的概率;現在超市又招進男、女員工各1人,超市女工占比還是75%嗎?甲同學認為是,乙同學認為不是.你認為誰說的對,并說明理由.24.(10分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.(1)求證:△AEF≌△DEB;(2)證明四邊形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCFD的面積.25.(10分)如圖,AB是圓O的直徑,AC是圓O的弦,過點C的切線交AB的延長線于點D,若∠A=∠D,CD=2.(1)求∠A的度數.(2)求圖中陰影部分的面積.26.(12分)如圖,在△ABC中,AB=AC=1,BC=5-1(1)通過計算,判斷AD2與AC?CD的大小關系;(2)求∠ABD的度數.27.(12分)為落實“美麗撫順”的工作部署,市政府計劃對城區(qū)道路進行了改造,現安排甲、乙兩個工程隊完成.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造360米的道路比乙隊改造同樣長的道路少用3天.甲、乙兩工程隊每天能改造道路的長度分別是多少米?若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,如需改造的道路全長1200米,改造總費用不超過145萬元,至少安排甲隊工作多少天?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題分析:∵一次函數y=kx+b(k、b是常數,k≠0)的圖象經過第一、二、四象限,∴k<0,b>0,故選B.考點:一次函數的性質和圖象2、D【解析】分析:根據相似三角形的性質進行解答即可.詳解:∵在平行四邊形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵∴∴∵AF∥BC,∴△EAF∽△EBC,∴故選D.點睛:考查相似三角形的性質:相似三角形的面積比等于相似比的平方.3、B【解析】
本題要根據過平面上的兩點有且只有一條直線的性質解答.【詳解】根據兩點確定一條直線.故選:B.【點睛】本題考查了“兩點確定一條直線”的公理,難度適中.4、A【解析】分析:首先求出∠AEB,再利用三角形內角和定理求出∠B,最后利用平行四邊形的性質得∠D=∠B即可解決問題.詳解:∵四邊形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四邊形ABCD是平行四邊形,∴∠D=∠B=65°故選A.點睛:本題考查正方形的性質、平行四邊形的性質、三角形內角和定理等知識,解題的關鍵是靈活運用所學知識解決問題,學會用轉化的思想思考問題,屬于中考??碱}型.5、B【解析】分析:科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值≥1時,n是正數;當原數的絕對值<1時,n是負數.詳解:把6800000用科學記數法表示為6.8×1.故選B.點睛:本題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.6、D【解析】
根據關于y軸對稱點的坐標特點:橫坐標互為相反數,縱坐標不變可得答案.【詳解】點關于y軸對稱的點的坐標為,故選:D.【點睛】本題主要考查了平面直角坐標系中點的對稱,熟練掌握點的對稱特點是解決本題的關鍵.7、D【解析】
直接利用三角板的特點,結合平行線的性質得出∠BDE=45°,進而得出答案.【詳解】解:由題意可得:∠EDF=30°,∠ABC=45°,
∵DE∥CB,
∴∠BDE=∠ABC=45°,
∴∠BDF=45°-30°=15°.
故選D.【點睛】此題主要考查了平行線的性質,根據平行線的性質得出∠BDE的度數是解題關鍵.8、D【解析】
先根據AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把兩式相加即可得出結論.【詳解】解:∵AB∥CD,∴∠BCD=∠1,∵CD∥EF,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.故選:D.【點睛】本題考查的是平行線的判定,用到的知識點為:兩直線平行,內錯角相等,同旁內角互補.9、A【解析】
根據三角函數的定義直接求解.【詳解】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=1.故選A10、B【解析】
先根據平行四邊形的性質得到點的坐標,再代入反比例函數(k≠0)求出其解析式,再根據反比例函數的圖象與性質對選項進行判斷.【詳解】解:A(4,0),B(1,3),,,反比例函數(k≠0)的圖象經過點,,反比例函數解析式為.□OACB的面積為,正確;當時,,故錯誤;將□OACB向上平移12個單位長度,點的坐標變?yōu)?,在反比例函數圖象上,故正確;因為反比例函數的圖象關于原點中心對稱,故將□OACB繞點O旋轉180°,點C的對應點落在反比例函數圖象的另一分支上,正確.故選:B.【點睛】本題綜合考查了平行四邊形的性質和反比例函數的圖象與性質,結合圖形,熟練掌握和運用相關性質定理是解答關鍵.11、A【解析】
直接根據圓周角定理即可得出結論.【詳解】∵A、B、C是⊙O上的三點,∠B=75°,∴∠AOC=2∠B=150°.故選A.12、B【解析】
利用多邊形的內角和公式求出n即可.【詳解】由題意得:(n-2)×180°=360°,解得n=4;故答案為:B.【點睛】本題考查多邊形的內角和,解題關鍵在于熟練掌握公式.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、平移,軸對稱【解析】分析:根據平移的性質和軸對稱的性質即可得到由△OCD得到△AOB的過程.詳解:△ABC向上平移5個單位,再沿y軸對折,得到△DEF,故答案為:平移,軸對稱.點睛:考查了坐標與圖形變化-旋轉,平移,軸對稱,解題時需要注意:平移的距離等于對應點連線的長度,對稱軸為對應點連線的垂直平分線,旋轉角為對應點與旋轉中心連線的夾角的大?。?4、【解析】
根據二次函數解析式可知函數圖象對稱軸是x=0,且開口向上,分析可知兩點均在對稱軸左側的圖象上;接下來,結合二次函數的性質可判斷對稱軸左側圖象的增減性,【詳解】解:二次函數的函數圖象對稱軸是x=0,且開口向上,∴在對稱軸的左側y隨x的增大而減小,∵-3>-4,∴>.故答案為>.【點睛】本題考查了二次函數的圖像和數形結合的數學思想.15、【解析】試題解析:根據題意得,這一組數的第個數為:故答案為點睛:觀察已知一組數發(fā)現:分子為從1開始的連續(xù)奇數,分母為從2開始的連續(xù)正整數的平方,寫出第個數即可.16、【解析】
先判斷擲一次骰子,向上的一面的點數為素數的情況,再利用概率公式求解即可.【詳解】解:∵擲一次這枚骰子,向上的一面的點數為素數的有2,3,5共3種情況,∴擲一次這枚骰子,向上的一面的點數為素數的概率是:.故答案為:.【點睛】本題考查了求簡單事件的概率,根據題意判斷出素數的個數是解題的關鍵.17、3【解析】試題分析:如圖,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,即,解得:AB=3m,答:路燈的高為3m.考點:中心投影.18、1.【解析】試題分析:先用相反數的意義確定出m+n=0,從而求出|m+n﹣1|,∵m,n互為相反數,∴m+n=0,∴|m+n﹣1|=|﹣1|=1;故答案為1.考點:1.絕對值的意義;2.相反數的性質.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=(x-)2-2;(2)△POE的面積為或;(3)點Q的坐標為(-,)或(-,2)或(,2).【解析】
(1)將點B坐標代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,據此證△OPE∽△FAE得===,即OP=FA,設點P(t,-2t-1),列出關于t的方程解之可得;(3)分點Q在AB上運動、點Q在BC上運動且Q在y軸左側、點Q在BC上運動且點Q在y軸右側這三種情況分類討論即可得.【詳解】解:(1)把點B(-,2)代入y=a(x-)2-2,解得a=1,∴拋物線的表達式為y=(x-)2-2,(2)由y=(x-)2-2知A(,-2),設直線AB表達式為y=kx+b,代入點A,B的坐標得,解得,∴直線AB的表達式為y=-2x-1,易求E(0,-1),F(0,-),M(-,0),若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,∴OP=FA=,設點P(t,-2t-1),則,解得t1=-,t2=-,由對稱性知,當t1=-時,也滿足∠OPM=∠MAF,∴t1=-,t2=-都滿足條件,∵△POE的面積=OE·|t|,∴△POE的面積為或;(3)如圖,若點Q在AB上運動,過N′作直線RS∥y軸,交QR于點R,交NE的延長線于點S,設Q(a,-2a-1),則NE=-a,QN=-2a.由翻折知QN′=QN=-2a,N′E=NE=-a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴==,即===2,∴QR=2,ES=,由NE+ES=NS=QR可得-a+=2,解得a=-,∴Q(-,),如圖,若點Q在BC上運動,且Q在y軸左側,過N′作直線RS∥y軸,交BC于點R,交NE的延長線于點S.設NE=a,則N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=,SE=-a.在Rt△SEN′中,(-a)2+12=a2,解得a=,∴Q(-,2),如圖,若點Q在BC上運動,且點Q在y軸右側,過N′作直線RS∥y軸,交BC于點R,交NE的延長線于點S.設NE=a,則N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR=,SE=-a.在Rt△SEN′中,(-a)2+12=a2,解得a=,∴Q(,2).綜上,點Q的坐標為(-,)或(-,2)或(,2).【點睛】本題主要考查二次函數的綜合問題,解題的關鍵是掌握待定系數法求函數解析式、相似三角形的判定與性質、翻折變換的性質及勾股定理等知識點.20、解:(1);(2);(3)n=17.【解析】
(1)、根據給出的式子將各式進行拆開,然后得出答案;(2)、根據給出的式子得出規(guī)律,然后根據規(guī)律進行計算;(3)、根據題意將式子進行展開,然后列出關于n的一元一次方程,從而得出n的值.【詳解】(1)原式=1?+?+?+?+?=1?=.故答案為;(2)原式=1?+?+?+…+?=1?=故答案為;(3)+++…+=(1?+?+?+…+?)=(1?)==解得:n=17.考點:規(guī)律題.21、(1)DE與⊙O相切,理由見解析;(2)陰影部分的面積為2π﹣.【解析】
(1)直接利用角平分線的定義結合平行線的判定與性質得出∠DEB=∠EDO=90°,進而得出答案;(2)利用勾股定理結合扇形面積求法分別分析得出答案.【詳解】(1)DE與⊙O相切,理由:連接DO,∵DO=BO,∴∠ODB=∠OBD,∵∠ABC的平分線交⊙O于點D,∴∠EBD=∠DBO,∴∠EBD=∠BDO,∴DO∥BE,∵DE⊥BC,∴∠DEB=∠EDO=90°,∴DE與⊙O相切;(2)∵∠ABC的平分線交⊙O于點D,DE⊥BE,DF⊥AB,∴DE=DF=3,∵BE=3,∴BD==6,∵sin∠DBF=,∴∠DBA=30°,∴∠DOF=60°,∴sin60°=,∴DO=2,則FO=,故圖中陰影部分的面積為:.【點睛】此題主要考查了切線的判定方法以及扇形面積求法等知識,正確得出DO的長是解題關鍵.22、(1)見解析;(1)⊙O半徑為【解析】
(1)連接OA,利用已知首先得出OA∥DE,進而證明OA⊥AE就能得到AE是⊙O的切線;(1)通過證明△BAD∽△AED,再利用對應邊成比例關系從而求出⊙O半徑的長.【詳解】解:(1)連接OA,∵OA=OD,∴∠1=∠1.∵DA平分∠BDE,∴∠1=∠2.∴∠1=∠2.∴OA∥DE.∴∠OAE=∠4,∵AE⊥CD,∴∠4=90°.∴∠OAE=90°,即OA⊥AE.又∵點A在⊙O上,∴AE是⊙O的切線.(1)∵BD是⊙O的直徑,∴∠BAD=90°.∵∠3=90°,∴∠BAD=∠3.又∵∠1=∠2,∴△BAD∽△AED.∴,∵BA=4,AE=1,∴BD=1AD.在Rt△BAD中,根據勾股定理,得BD=.∴⊙O半徑為.23、(1)32(人),25(人);(2);(3)乙同學,見解析.【解析】
(1)用A超市有女工人數除以女工人數占比,可求A超市共有員工多少人;先求出D超市女工所占圓心角度數,進一步得到四個中小型超市的女工人數比,從而求得B超市有女工多少人;
(2)先求出C超市有女工人數,進一步得到四個中小型超市共有女工人數,再根據概率的定義即可求解;
(3)先求出D超市有女工人數、共有員工多少人,再得到D超市又招進男、女員工各1人,D超市有女工人數、共有員工多少人,再根據概率的定義即可求解.【詳解】解:(1)A超市共有員工:20÷62.5%=32(人),∵360°-80°-100°-120°=60°,∴四個超市女工人數的比為:80:100:120:60=4:5:6:3,∴B超市有女工:20×=25(人);(2)C超市有女工:20×=30(人).四個超市共有女工:20×=90(人).從這些女工中隨機選出一個,正好是C超市的概率為=.(3)乙同學.理由:D超市有女工20×=15(人),共有員工15÷75%=20(人),再招進男、女員工各1人,共有員工22人,其中女工是16人,女工占比為=≠75%.【點睛】本題考查了統(tǒng)計表與扇形統(tǒng)計圖的綜合,以及概率的知識.用到的知識點為:概率=所求情況數與總情況數之比.24、(1)證明詳見解析;(2)證明詳見解析;(3)1.【解析】
(1)利用平行線的性質及中點的定義,可利用AAS證得結論;
(2)由(1)可得AF=BD,結合條件可求得AF=DC,則可證明四邊形ADCF為平行四邊形,再利用直角三角形的性質可證得AD=CD,可證得四邊形ADCF為菱形;
(3)連接DF,可證得四邊形ABDF為平行四邊形,則可求得DF的長,利用菱形的面積公式可求得答案.【詳解】(1)證明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中點,
∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE(AAS);
(2)證明:由(1)知,△AFE≌△DBE,則AF=DB.
∵AD為BC邊上的中線
∴DB=DC,
∴AF=CD.
∵AF∥BC,
∴四邊形ADCF是平行四邊形,
∵∠BAC=90°,D是BC的中點,E是AD的中點,
∴AD=DC=BC,
∴四邊形ADCF是菱形;
(3)連接DF,
∵AF∥BD,AF=BD,
∴四邊形ABDF是平行四邊形,
∴DF=AB=5,
∵四邊形ADCF是菱形,
∴S菱形ADCF=AC?DF=×4×5=1.【點睛】本題主要考查菱形的性質及判定,利用全等三角形的性質證得AF=CD是解題的關鍵,注意菱形面積公式的應用.25、(1)∠A=30°;(2)【解析】
(1)連接OC,由過點C的切線交AB的延長線于點D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.(2)先求∠COD度數及OC長度,即可求出圖中陰影部分的面積.【詳解】解:(1)連結OC∵CD為⊙O的切線∴OC⊥CD∴∠OCD=90
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年電梯廣告投放合同
- 2025深圳經濟特區(qū)股權轉讓合同范本
- 2024年榆林高專附中教師招聘真題
- 購房定金協合同范本
- 2024年紹興嵊州市人民醫(yī)院招聘真題
- 2024年平湖市市屬事業(yè)單位考試真題
- 2024年樂山市五通橋區(qū)招聘事業(yè)單位工作人員真題
- 設立分公司合作合同(2025年版)
- 2024年安仁職業(yè)中專專任教師招聘真題
- 2024年安徽亳州技師學院專任教師招聘真題
- 《網絡營銷》-課件:33病毒營銷
- 2024項目投資協議書
- 《駱駝祥子》讀書分享
- 湖南省2024年中考物理試題(含答案)
- NB-T35026-2022混凝土重力壩設計規(guī)范
- 中考數學計算題練習100道(2024年中考真題)
- DL-T-5161.8-2018電氣裝置安裝工程質量檢驗及評定規(guī)程盤、柜、及二次回路接線施工質量檢驗
- 家校溝通經驗分享-溝通有方法教育有溫度
- CJJ75-1997 城市道路綠化規(guī)劃與設計規(guī)范
- JT-T-1238-2019半柔性混合料用水泥基灌漿材料
- 萬城商業(yè)地產公司簡介
評論
0/150
提交評論