




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列運算正確的是()A.a2+a3=a5 B.(a3)2÷a6=1 C.a2?a3=a6 D.(2+3)2=52.如圖,點A、B、C、D、O都在方格紙的格點上,若△COD是由△AOB繞點O按逆時針方向旋轉而得,則旋轉的角度為()A.30° B.45°C.90° D.135°3.計算3–(–9)的結果是()A.12 B.–12 C.6 D.–64.已知直線y=ax+b(a≠0)經過第一,二,四象限,那么直線y=bx-a一定不經過(
)A.第一象限B.第二象限C.第三象限D.第四象限5.下列計算正確的是()A.(a)=a B.a+a=aC.(3a)?(2a)=6a D.3a﹣a=36.某春季田徑運動會上,參加男子跳高的15名運動員的成績如下表所示:成績人數這些運動員跳高成績的中位數是()A. B. C. D.7.如圖,平行四邊形ABCD中,E,F(xiàn)分別在CD、BC的延長線上,AE∥BD,EF⊥BC,tan∠ABC=,EF=,則AB的長為()A. B. C.1 D.8.計算的結果是()A. B. C. D.19.某一公司共有51名員工(包括經理),經理的工資高于其他員工的工資,今年經理的工資從去年的200000元增加到225000元,而其他員工的工資同去年一樣,這樣,這家公司所有員工今年工資的平均數和中位數與去年相比將會()A.平均數和中位數不變 B.平均數增加,中位數不變C.平均數不變,中位數增加 D.平均數和中位數都增大10.我國古代數學著作《九章算術》中,將底面是直角三角形,且側棱與底面垂直的三棱柱稱為“塹堵”某“塹堵”的三視圖如圖所示(網格圖中每個小正方形的邊長均為1),則該“塹堵”的側面積為()A.16+16 B.16+8 C.24+16 D.4+4二、填空題(共7小題,每小題3分,滿分21分)11.含角30°的直角三角板與直線,的位置關系如圖所示,已知,∠1=60°,以下三個結論中正確的是____(只填序號).①AC=2BC②△BCD為正三角形③AD=BD12.不等式-2x+3>0的解集是___________________13.已知邊長為2的正六邊形ABCDEF在平面直角坐標系中的位置如圖所示,點B在原點,把正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉,每次翻轉60°,經過2018次翻轉之后,點B的坐標是______.14.將多項式因式分解的結果是.15.若正六邊形的邊長為2,則此正六邊形的邊心距為______.16.把一張長方形紙條按如圖所示折疊后,若∠AOB′=70°,則∠B′OG=_____.17.計算:(π﹣3)0+(﹣)﹣1=_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,點D、E分別在邊AB、AC上,DE∥BC,且DE=BC.如果AC=6,求AE的長;設,,求向量(用向量、表示).19.(5分)如圖,AB是⊙O的直徑,點F,C是⊙O上兩點,且,連接AC,AF,過點C作CD⊥AF交AF延長線于點D,垂足為D.(1)求證:CD是⊙O的切線;(2)若CD=2,求⊙O的半徑.
20.(8分)如圖1,二次函數y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側),與y軸的正半軸交于點C,頂點為D.(1)求頂點D的坐標(用含a的代數式表示);(2)若以AD為直徑的圓經過點C.①求拋物線的函數關系式;②如圖2,點E是y軸負半軸上一點,連接BE,將△OBE繞平面內某一點旋轉180°,得到△PMN(點P、M、N分別和點O、B、E對應),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標;③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標.21.(10分)如圖,中,于,點分別是的中點.(1)求證:四邊形是菱形(2)如果,求四邊形的面積22.(10分)如圖,在△ABC中,∠ACB=90°,O是AB上一點,以OA為半徑的⊙O與BC相切于點D,與AB交于點E,連接ED并延長交AC的延長線于點F.(1)求證:AE=AF;(2)若DE=3,sin∠BDE=,求AC的長.23.(12分)某學校計劃組織全校1441名師生到相關部門規(guī)劃的林區(qū)植樹,經過研究,決定租用當地租車公司一共62輛A,B兩種型號客車作為交通工具.下表是租車公司提供給學校有關兩種型號客車的載客量和租金信息:型號載客量租金單價A30人/輛380元/輛B20人/輛280元/輛注:載客量指的是每輛客車最多可載該校師生的人數設學校租用A型號客車x輛,租車總費用為y元.求y與x的函數解析式,請直接寫出x的取值范圍;若要使租車總費用不超過21940元,一共有幾種租車方案?哪種租車方案總費用最省?最省的總費用是多少?24.(14分)解不等式組,并把解集在數軸上表示出來.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
利用合并同類項對A進行判斷;根據冪的乘方和同底數冪的除法對B進行判斷;根據同底數冪的乘法法則對C進行判斷;利用完全平方公式對D進行判斷.【詳解】解:A、a2與a3不能合并,所以A選項錯誤;B、原式=a6÷a6=1,所以A選項正確;C、原式=a5,所以C選項錯誤;D、原式=2+26+3=5+26,所以D選項錯誤.故選:B.【點睛】本題考查同底數冪的乘除、二次根式的混合運算,:二次根式的混合運算先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.解題關鍵是在二次根式的混合運算中,如能結合題目特點,靈活運用二次根式的性質,選擇恰當的解題途徑,往往能事半功倍.2、C【解析】
根據勾股定理求解.【詳解】設小方格的邊長為1,得,OC=,AO=,AC=4,∵OC2+AO2==16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故選C.【點睛】考點:勾股定理逆定理.3、A【解析】
根據有理數的減法,即可解答.【詳解】故選A.【點睛】本題考查了有理數的減法,解決本題的關鍵是熟記減去一個數等于加上這個數的相反數.4、D【解析】
根據直線y=ax+b(a≠0)經過第一,二,四象限,可以判斷a、b的正負,從而可以判斷直線y=bx-a經過哪幾個象限,不經過哪個象限,本題得以解決.【詳解】∵直線y=ax+b(a≠0)經過第一,二,四象限,∴a<0,b>0,∴直線y=bx-a經過第一、二、三象限,不經過第四象限,故選D.【點睛】本題考查一次函數的性質,解答本題的關鍵是明確題意,利用一次函數的性質解答.5、A【解析】
根據同底數冪的乘法的性質,冪的乘方的性質,積的乘方的性質,合并同類項的法則,對各選項分析判斷后利用排除法求解.【詳解】A.(a2)3=a2×3=a6,故本選項正確;B.a2+a2=2a2,故本選項錯誤;C.(3a)?(2a)2=(3a)?(4a2)=12a1+2=12a3,故本選項錯誤;D.3a﹣a=2a,故本選項錯誤.故選A.【點睛】本題考查了合并同類項,同底數冪的乘法,冪的乘方,積的乘方和單項式乘法,理清指數的變化是解題的關鍵.6、C【解析】
根據中位數的定義解答即可.【詳解】解:在這15個數中,處于中間位置的第8個數是1.1,所以中位數是1.1.
所以這些運動員跳高成績的中位數是1.1.
故選:C.【點睛】本題考查了中位數的意義.中位數是將一組數據從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(最中間兩個數的平均數),叫做這組數據的中位數.7、B【解析】
由平行四邊形性質得出AB=CD,AB∥CD,證出四邊形ABDE是平行四邊形,得出DE=DC=AB,再由平行線得出∠ECF=∠ABC,由三角函數求出CF長,再用勾股定理CE,即可得出AB的長.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥DC,AB=CD,∵AE∥BD,∴四邊形ABDE是平行四邊形,∴AB=DE,∴AB=DE=CD,即D為CE中點,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠ECF=∠ABC,∴tan∠ECF=tan∠ABC=,在Rt△CFE中,EF=,tan∠ECF===,∴CF=,根據勾股定理得,CE==,∴AB=CE=,故選B.【點睛】本題考查了平行四邊形的性質和判定、平行線的性質,三角函數的運用;熟練掌握平行四邊形的性質,勾股定理,判斷出AB=CE是解決問題的關鍵.8、D【解析】
根據同分母分式的加法法則計算可得結論.【詳解】===1.故選D.【點睛】本題考查了分式的加減法,解題的關鍵是掌握同分母分式的加減運算法則.9、B【解析】
本題考查統(tǒng)計的有關知識,找中位數要把數據按從小到大的順序排列,位于最中間的一個數或兩個數的平均數為中位數,平均數是指在一組數據中所有數據之和再除以數據的個數.【詳解】解:設這家公司除經理外50名員工的工資和為a元,則這家公司所有員工去年工資的平均數是元,今年工資的平均數是元,顯然;
由于這51個數據按從小到大的順序排列的次序完全沒有變化,所以中位數不變.
故選B.【點睛】本題主要考查了平均數,中位數的概念,要掌握這些基本概念才能熟練解題.同時注意到個別數據對平均數的影響較大,而對中位數和眾數沒影響.10、A【解析】
分析出此三棱柱的立體圖像即可得出答案.【詳解】由三視圖可知主視圖為一個側面,另外兩個側面全等,是長×高=×4=,所以側面積之和為×2+4×4=16+16,所以答案選擇A項.【點睛】本題考查了由三視圖求側面積,畫出該圖的立體圖形是解決本題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、②③【解析】
根據平行線的性質以及等邊三角形的性質即可求出答案.【詳解】由題意可知:∠A=30°,∴AB=2BC,故①錯誤;∵l1∥l2,∴∠CDB=∠1=60°.∵∠CBD=60°,∴△BCD是等邊三角形,故②正確;∵△BCD是等邊三角形,∴∠BCD=60°,∴∠ACD=∠A=30°,∴AD=CD=BD,故③正確.故答案為②③.【點睛】本題考查了平行的性質以及等邊三角形的性質,解題的關鍵是熟練運用平行線的性質,等邊三角形的性質,含30度角的直角三角形的性質,本題屬于中等題型.12、x<【解析】
根據解一元一次不等式基本步驟:移項、系數化為1可得.【詳解】移項,得:-2x>-3,系數化為1,得:x<,故答案為x<.【點睛】本題主要考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數不等號方向要改變.13、(4033,)【解析】
根據正六邊形的特點,每6次翻轉為一個循環(huán)組循環(huán),用2018除以6,根據商和余數的情況確定出點B的位置,經過第2017次翻轉之后,點B的位置不變,仍在x軸上,由A(﹣2,0),可得AB=2,即可求得點B離原點的距離為4032,所以經過2017次翻轉之后,點B的坐標是(4032,0),經過2018次翻轉之后,點B在B′位置(如圖所示),則△BB′C為等邊三角形,可求得BN=NC=1,B′N=,由此即可求得經過2018次翻轉之后點B的坐標.然后求出翻轉前進的距離,過點C作CG⊥x于G,求出∠CBG=60°,然后求出CG、BG,再求出OG,然后寫出點C的坐標即可.【詳解】設2018次翻轉之后,在B′點位置,∵正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉,每次翻轉60°,∴每6次翻轉為一個循環(huán)組,∵2018÷6=336余2,∴經過2016次翻轉為第336個循環(huán),點B在初始狀態(tài)時的位置,而第2017次翻轉之后,點B的位置不變,仍在x軸上,∵A(﹣2,0),∴AB=2,∴點B離原點的距離=2×2016=4032,∴經過2017次翻轉之后,點B的坐標是(4032,0),經過2018次翻轉之后,點B在B′位置,則△BB′C為等邊三角形,此時BN=NC=1,B′N=,故經過2018次翻轉之后,點B的坐標是:(4033,).故答案為(4033,).【點睛】本題考查的是正多邊形和圓,涉及到坐標與圖形變化-旋轉,正六邊形的性質,確定出最后點B所在的位置是解題的關鍵.14、m(m+n)(m﹣n).【解析】試題分析:原式==m(m+n)(m﹣n).故答案為:m(m+n)(m﹣n).考點:提公因式法與公式法的綜合運用.15、.【解析】
連接OA、OB,根據正六邊形的性質求出∠AOB,得出等邊三角形OAB,求出OA、AM的長,根據勾股定理求出即可.【詳解】連接OA、OB、OC、OD、OE、OF,∵正六邊形ABCDEF,∴∠AOB=∠BOC=∠COD=∠DOE=∠EOF=∠AOF,∴∠AOB=60°,OA=OB,∴△AOB是等邊三角形,∴OA=OB=AB=2,∵AB⊥OM,∴AM=BM=1,在△OAM中,由勾股定理得:OM=.16、55°【解析】
由翻折性質得,∠BOG=∠B′OG,根據鄰補角定義可得.【詳解】解:由翻折性質得,∠BOG=∠B′OG,∵∠AOB′+∠BOG+∠B′OG=180°,∴∠B′OG=(180°﹣∠AOB′)=(180°﹣70°)=55°.故答案為55°.【點睛】考核知識點:補角,折疊.17、-1【解析】
先計算0指數冪和負指數冪,再相減.【詳解】(π﹣3)0+(﹣)﹣1,=1﹣3,=﹣1,故答案是:﹣1.【點睛】考查了0指數冪和負指數冪,解題關鍵是運用任意數的0次冪為1,a-1=.三、解答題(共7小題,滿分69分)18、(1)1;(2).【解析】
(1)由平行線截線段成比例求得AE的長度;(2)利用平面向量的三角形法則解答.【詳解】(1)如圖,∵DE∥BC,且DE=BC,∴.又AC=6,∴AE=1.(2)∵,,∴.又DE∥BC,DE=BC,∴【點睛】考查了平面向量,需要掌握平面向量的三角形法則和平行向量的定義.19、(2)1【解析】試題分析:(1)連結OC,由=,根據圓周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,則∠FAC=∠OCA,可判斷OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根據切線的判定定理得到CD是⊙O的切線;(2)連結BC,由AB為直徑得∠ACB=90°,由==,得∠BOC=60°,則∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30°的直角三角形三邊的關系得AC=2CD=1,在Rt△ACB中,利用含30°的直角三角形三邊的關系得BC=AC=1,AB=2BC=8,所以⊙O的半徑為1.試題解析:(1)證明:連結OC,如圖,∵=∴∠FAC=∠BAC∵OA=OC∴∠OAC=∠OCA∴∠FAC=∠OCA∴OC∥AF∵CD⊥AF∴OC⊥CD∴CD是⊙O的切線(2)解:連結BC,如圖∵AB為直徑∴∠ACB=90°∵==∴∠BOC=×180°=60°∴∠BAC=30°∴∠DAC=30°在Rt△ADC中,CD=2∴AC=2CD=1在Rt△ACB中,BC=AC=×1=1∴AB=2BC=8∴⊙O的半徑為1.考點:圓周角定理,切線的判定定理,30°的直角三角形三邊的關系20、(1)(1,﹣4a);(2)①y=﹣x2+2x+3;②M(,)、N(,);③點Q的坐標為(1,﹣4+2)或(1,﹣4﹣2).【解析】分析:(1)將二次函數的解析式進行配方即可得到頂點D的坐標.(2)①以AD為直徑的圓經過點C,即點C在以AD為直徑的圓的圓周上,依據圓周角定理不難得出△ACD是個直角三角形,且∠ACD=90°,A點坐標可得,而C、D的坐標可由a表達出來,在得出AC、CD、AD的長度表達式后,依據勾股定理列等式即可求出a的值.②將△OBE繞平面內某一點旋轉180°得到△PMN,說明了PM正好和x軸平行,且PM=OB=1,所以求M、N的坐標關鍵是求出點M的坐標;首先根據①的函數解析式設出M點的坐標,然后根據題干條件:BF=2MF作為等量關系進行解答即可.③設⊙Q與直線CD的切點為G,連接QG,由C、D兩點的坐標不難判斷出∠CDQ=45°,那么△QGD為等腰直角三角形,即QD2=2QG2=2QB2,設出點Q的坐標,然后用Q點縱坐標表達出QD、QB的長,根據上面的等式列方程即可求出點Q的坐標.詳解:(1)∵y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,∴D(1,﹣4a).(2)①∵以AD為直徑的圓經過點C,∴△ACD為直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a(x﹣3)(x+1)知,A(3,0)、B(﹣1,0)、C(0,﹣3a),則:AC2=9a2+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化簡,得:a2=1,由a<0,得:a=﹣1,②∵a=﹣1,∴拋物線的解析式:y=﹣x2+2x+3,D(1,4).∵將△OBE繞平面內某一點旋轉180°得到△PMN,∴PM∥x軸,且PM=OB=1;設M(x,﹣x2+2x+3),則OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵BF=2MF,∴x+1=2(﹣x2+2x+3),化簡,得:2x2﹣3x﹣5=0解得:x1=﹣1(舍去)、x2=.∴M(,)、N(,).③設⊙Q與直線CD的切點為G,連接QG,過C作CH⊥QD于H,如下圖:∵C(0,3)、D(1,4),∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;設Q(1,b),則QD=4﹣b,QG2=QB2=b2+4;得:(4﹣b)2=2(b2+4),化簡,得:b2+8b﹣8=0,解得:b=﹣4±2;即點Q的坐標為(1,)或(1,).點睛:此題主要考查了二次函數解析式的確定、旋轉圖形的性質、圓周角定理以及直線和圓的位置關系等重要知識點;后兩個小題較難,最后一題中,通過構建等腰直角三角形找出QD和⊙Q半徑間的數量關系是解題題目的關鍵.21、(1)證明見解析;(2).【解析】
(1)先根據直角三角形斜邊上中線的性質,得出DE=AB=AE,DF=AC=AF,再根據AB=AC,點E、F分別是AB、AC的中點,即可得到AE=AF=DE=DF,進而判定四邊形AEDF是菱形;
(2)根據等邊三角形的性質得出EF=5,AD=5,進而得到菱形AEDF的面積S.【詳解】解:(1)∵AD⊥BC,點E、F分別是AB、AC的中點,
∴Rt△ABD中,DE=AB=AE,
Rt△ACD中,DF=AC=AF,
又∵AB=AC,點E、F分別是AB、AC的中點,
∴AE=AF,
∴AE=AF=DE=DF,
∴四邊形AEDF是菱形;
(2)如圖,
∵AB=AC=BC=10,
∴EF=5,AD=5,
∴菱形AEDF的面積S=EF?AD=×5×5=.【點睛】本題考查菱形的判定與性質的運用,解題時注意:四條邊相等的四邊形是菱形;菱形的面積等于對角線長乘積的一半.22、(1)證明見解析;(2)1.【解析】
(1)根據切線的性質和平行線的性質解答即可;(2)根據直角三角形的性質和三角函數解答即可.【詳解】(1)連接OD,∵OD=OE,∴∠ODE=∠OED.∵直線BC為⊙O的切線,∴OD⊥BC.∴∠ODB=90°.∵∠ACB=90°,∴OD∥AC.∴∠ODE=∠F.∴∠OED=∠F.∴AE=AF;(2)連接AD,∵AE是⊙O的直徑,∴∠ADE=90°,∵AE=AF,∴DF=DE=3,∵∠ACB=90°,∴∠DAF+∠F=90°,∠CDF+∠F=90°,∴∠DAF=∠CDF=∠BDE,在Rt△ADF中,=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國正裝皮鞋數據監(jiān)測研究報告
- 第九單元實驗活動7粗鹽中難溶性雜質的去除教學設計-2024-2025學年九年級化學人教版(2024)下冊
- 紹興市上虞區(qū)城北實驗中學人教版七年級下冊歷史與社會第五單元第三課 地域差異顯著教學設計
- 2025至2030年中國染色經緯彈力布數據監(jiān)測研究報告
- 2025至2030年中國機動單桿拉力機數據監(jiān)測研究報告
- 第13課 西歐經濟和社會的發(fā)展-2024-2025學年九年級歷史上冊核心素養(yǎng)驅動教學設計
- 2025至2030年中國排水帽數據監(jiān)測研究報告
- 第1章 第1節(jié) 走進生物實驗室(新教學設計)2023-2024學年七年級上冊生物(冀少版)
- 二零二五年度活動板房租賃與租賃期滿資產補償及更新承包合同
- 電子協(xié)議書2025年度應屆畢業(yè)生簽訂與執(zhí)行說明
- 2024年江蘇經貿職業(yè)技術學院單招職業(yè)適應性測試題庫
- 《大白菜種植栽培技》課件
- 北京工業(yè)大學《數據挖掘》2023-2024學年第一學期期末試卷
- 2024年物聯(lián)網安裝調試員(中級工)職業(yè)資格鑒定考試題庫(含答案)
- 標準化機房改造方案
- 珠海市第三人民醫(yī)院中醫(yī)智能臨床輔助診療系統(tǒng)建設方案
- 早產臨床診斷與治療指南
- 工程簽證單完整版
- 《義務教育數學課程標準(2022年版)》初中內容解讀
- 2025屆高三化學一輪復習 原電池 化學電源(第一課時)課件
- 全院護理查房(食管裂孔疝)
評論
0/150
提交評論