統(tǒng)計(jì)應(yīng)用案例-報(bào)童模型課件_第1頁
統(tǒng)計(jì)應(yīng)用案例-報(bào)童模型課件_第2頁
統(tǒng)計(jì)應(yīng)用案例-報(bào)童模型課件_第3頁
統(tǒng)計(jì)應(yīng)用案例-報(bào)童模型課件_第4頁
統(tǒng)計(jì)應(yīng)用案例-報(bào)童模型課件_第5頁
已閱讀5頁,還剩23頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

《統(tǒng)計(jì)應(yīng)用案例-報(bào)童模型》

在你面前有三個(gè)門,其中兩個(gè)門里面是山羊,另外一個(gè)是汽車。你當(dāng)然想得到那輛汽車,而不是臭氣轟轟的山羊。主持人要求你選中一個(gè),但是不能打開。此時(shí)主持人打開另外一個(gè),是山羊?,F(xiàn)在主持人問你,你要不要改成第三個(gè)門?3

誰是更好的采購經(jīng)理?如果產(chǎn)品是賀卡:利潤=$3.00成本=$0.20?設(shè)想有倆個(gè)經(jīng)理管理同樣的一產(chǎn)品(超10個(gè)品種)的采購。假定條件相同。在季節(jié)結(jié)束,張經(jīng)理基本沒有剩余;王經(jīng)理多個(gè)品種有剩余。報(bào)亭老板如何決策?銷售份數(shù)天數(shù)110220340420510南大北門的報(bào)亭在過去100天里,某報(bào)紙的銷售記錄如左表。報(bào)紙銷售價(jià)1元,進(jìn)價(jià)0.3元。問:報(bào)亭老板每天訂幾份報(bào)紙合適?A.2B.3C.45什么是分析能力?

一位物理學(xué)家,工程師和數(shù)學(xué)家在東馬徒步旅行,看到一頭黑山羊在山坡上吃草。物理學(xué)家首先發(fā)表高見:“所有馬國的山羊都是黑色的?!?“不對(duì),西蒙。有些馬國的山羊是黑色,”工程師糾正到。 數(shù)學(xué)家最后發(fā)言:“從所看到的,我們只能說,在東馬,至少有一只山羊至少身體的一面是黑色的?!睕Q策思路邊際成本=邊際收入7單周期最優(yōu)訂貨量-1定義:

-期末庫存余量為正時(shí)的單位成本(滯銷成本)

-需求未滿足導(dǎo)致的成本(機(jī)會(huì)成本) -周期一開始購買的商品數(shù)量

-需求量D的概率密度函數(shù)

-需求量D的概率分布函數(shù)案例:報(bào)童模型Pandora皮衣:單位利潤14.50$,因滯銷降價(jià)而帶來損失5.00$/件.成員CorolnLauraTomKenyWallyWendy平均標(biāo)準(zhǔn)差預(yù)測12001150125013001100120012001309單周期最優(yōu)訂貨量-2

從A-1看出,對(duì)于面積=0.74,z=0.65。因此面積=0.74需求量,Xf(x)O’Neill’sHammer3/2wetsuitHammer3/2timelineandeconomicsEconomics:Eachsuitsellsforp=$180TECchargesc=$110persuitDiscountedsuitssellforv=$90The“toomuch/toolittleproblem”:OrdertoomuchandinventoryisleftoverattheendoftheseasonOrdertoolittleandsalesarelost.Marketing’sforecastforsalesis3200unitsNewsvendormodelimplementationstepsGathereconomicinputs:Sellingprice,production/procurementcost,salvagevalueofinventoryGenerateademandmodel:Useempiricaldemanddistributionorchooseastandarddistributionfunctiontorepresentdemand,e.g.thenormaldistribution,thePoissondistribution.Chooseanobjective:e.g.maximizeexpectedprofitorsatisfyafillrateconstraint.Chooseaquantitytoorder.TheNewsvendorModel:

DevelopaForecastHistoricalforecastperformanceatO’NeillForecastsandactualdemandforsurfwet-suitsfromthepreviousseasonEmpiricaldistributionofforecastaccuracyNormaldistributiontutorialAllnormaldistributionsarecharacterizedbytwoparameters,mean=mandstandarddeviation=s

Allnormaldistributionsarerelatedtothestandardnormalthathasmean=0andstandarddeviation=1.Forexample:LetQbetheorderquantity,and(m,s)theparametersofthenormaldemandforecast.Prob{demandisQorlower}=Prob{theoutcomeofastandardnormaliszorlower},where(Theabovearetwowaystowritethesameequation,thefirstallowsyoutocalculatezfromQandthesecondletsyoucalculateQfromz.)LookupProb{theoutcomeofastandardnormaliszorlower}intheStandardNormalDistributionFunctionTable.ConvertingbetweenNormaldistributionsStartwith=100,=25,Q=125Centerthedistributionover0bysubtractingthemeanRescalethexandyaxesbydividingbythestandarddeviationStartwithaninitialforecastgeneratedfromhunches,guesses,etc.O’Neill’sinitialforecastfortheHammer3/2=3200units.EvaluatetheA/Fratiosofthehistoricaldata:SetthemeanofthenormaldistributiontoSetthestandarddeviationofthenormaldistributiontoUsinghistoricalA/FratiostochooseaNormaldistributionforthedemandforecastO’Neill’sHammer3/2normaldistributionforecastO’Neillshouldchooseanormaldistributionwithmean3192andstandarddeviation1181torepresentdemandfortheHammer3/2duringtheSpringseason.EmpiricalvsnormaldemanddistributionEmpiricaldistributionfunction(diamonds)andnormaldistributionfunctionwithmean3192andstandarddeviation1181(solidline)“Toomuch”and“toolittle”costsCu

=underagecostCo=overagecostThecostoforderingonemoreunitthanwhatyouwouldhaveorderedhadyouknowndemand.Inotherwords,supposeyouhadleftoverinventory(i.e.,youoverordered).Coistheincreaseinprofityouwouldhaveenjoyedhadyouorderedonefewerunit.FortheHammer3/2Co=Cost–Salvagevalue=c–v=110–90=20Thecostoforderingonefewerunitthanwhatyouwouldhaveorderedhadyouknowndemand.Inotherwords,supposeyouhadlostsales(i.e.,youunderordered).Cuistheincreaseinprofityouwouldhaveenjoyedhadyouorderedonemoreunit.FortheHammer3/2Cu=Price–Cost=p–c=180–110=70BalancingtheriskandbenefitoforderingaunitOrderingonemoreunitincreasesthechanceofoverage…ExpectedlossontheQthunit=CoxF(Q)F(Q)=Distributionfunctionofdemand=Prob{Demand<=Q)…butthebenefit/gainoforderingonemoreunitisthereductioninthechanceofunderage:ExpectedgainontheQthunit=Cux(1-F(Q))Asmoreunitsareordered,theexpectedbenefitfromorderingoneunitdecreaseswhiletheexpectedlossoforderingonemoreunitincreases.NewsvendorexpectedprofitmaximizingorderquantityTomaximizeexpectedprofitorderQunitssothattheexpectedlossontheQthunitequalstheexpectedgainontheQthunit:Rearrangetermsintheaboveequation->TheratioCu/(Co+Cu)iscalledthecriticalratio.

Hence,tomaximizeprofit,chooseQsuchthatwedon’thavelostsales(i.e.,demandisQorlower)withaprobabilitythatequalsthecriticalratioFindingtheHammer3/2’sexpectedprofitmaximizingorderquantitywiththeempiricaldistributionfunctionInputs:Empiricaldistributionfunctiontable;p=180;c=110;v=90;Cu=180-110=70;Co=110-90=20Evaluatethecriticalratio:Lookup0.7778intheempiricaldistributionfunctiontableIfthecriticalratiofallsbetweentwovaluesinthetable,choosetheonethatleadstothegreaterorderquantity(choose0.788which

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論