高等數(shù)學(xué)有理式的不定積分方法_第1頁
高等數(shù)學(xué)有理式的不定積分方法_第2頁
高等數(shù)學(xué)有理式的不定積分方法_第3頁
高等數(shù)學(xué)有理式的不定積分方法_第4頁
高等數(shù)學(xué)有理式的不定積分方法_第5頁
已閱讀5頁,還剩25頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

高等數(shù)學(xué)有理式的不定積分方法第一頁,共三十頁,編輯于2023年,星期二部分分式:第二頁,共三十頁,編輯于2023年,星期二

有理函數(shù)積分法第三頁,共三十頁,編輯于2023年,星期二第四頁,共三十頁,編輯于2023年,星期二如果有一個重實根,則的部分分式中一定包含下列形式的項部分分式之和:如果中包含因子時,則的部分分式中一定包含下列形式的項部分分式之和:第五頁,共三十頁,編輯于2023年,星期二

例如將真分式分解成部分分式.

第六頁,共三十頁,編輯于2023年,星期二四種典型部分分式的積分:

變分子為再分項積分第七頁,共三十頁,編輯于2023年,星期二第八頁,共三十頁,編輯于2023年,星期二而最后一個積分可以用上上一節(jié)例6中的遞推公式.第九頁,共三十頁,編輯于2023年,星期二說明:遞推公式已知利用遞推公式可求得例如,第十頁,共三十頁,編輯于2023年,星期二例1求解第一種方法:待定系數(shù)法,可以用如下的方法求出待定系數(shù).上式通分后得比較恒等式兩端同次冪的系數(shù),得一方程組:第十一頁,共三十頁,編輯于2023年,星期二

從而解得故有

于是第十二頁,共三十頁,編輯于2023年,星期二

化簡并約去兩端的公因子后為得例2

求第二種方法(賦值法)第十三頁,共三十頁,編輯于2023年,星期二兩端去分母,得或比較兩端的各同次冪的系數(shù)及常數(shù)項,有解之得解第十四頁,共三十頁,編輯于2023年,星期二第十五頁,共三十頁,編輯于2023年,星期二補例解第十六頁,共三十頁,編輯于2023年,星期二例3

求解即有即第十七頁,共三十頁,編輯于2023年,星期二用遞推公式求或第十八頁,共三十頁,編輯于2023年,星期二第十九頁,共三十頁,編輯于2023年,星期二

總之,有理函數(shù)分解為多項式及部分分式之和以后,各個部分都能積出,且原函數(shù)都是初等函數(shù).此外,由代數(shù)學(xué)知道,從理論上說,多項式Q(x)總可以在實數(shù)范圍內(nèi)分解成為一次因式及二次因式的乘積,從而把有理函數(shù)分解為多項式與部分分式之和.因此,有理函數(shù)的原函數(shù)都是初等函數(shù).

但是,用部分分式法求有理函數(shù)的積分,一般說來計算比較繁,只是在沒有其它方法的情況下,才用此方法.例4

求解第二十頁,共三十頁,編輯于2023年,星期二補例求解

原式注意本題技巧按常規(guī)方法較繁第二十一頁,共三十頁,編輯于2023年,星期二(1)三角有理式:

——由三角函數(shù)和常數(shù)經(jīng)過有限次四則運算構(gòu)成的函數(shù).三角函數(shù)有理式可記為2.三角函數(shù)有理式的不定積分(2)三角有理式的積分法:第二十二頁,共三十頁,編輯于2023年,星期二令萬能替換公式:第二十三頁,共三十頁,編輯于2023年,星期二例4求解令,則第二十四頁,共三十頁,編輯于2023年,星期二注(1)用萬能代換一定能將三角函數(shù)有理式的積分化為有理函數(shù)的積分;(2)萬能代換不一定是最好的;(3)常用的將三角函數(shù)有理式的積分化為有理函數(shù)的積分的代換方法(非“萬能的”):1)若R(-sinx,cosx)=-R(sinx,cosx),可取u=cosx

為積分變量;2)若R(sinx,-cosx)=-R(sinx,cosx),可取u=sinx

為積分變量;3)若R(-sinx,-cosx)=R(sinx,cosx),可取u=tanx

為積分變量.第二十五頁,共三十頁,編輯于2023年,星期二例5求解第二十六頁,共三十頁,編輯于2023年,星期二例6求解第二十七頁,共三十頁,編輯于2023年,星期二例7求解注第二十八頁,共三十頁,編輯于2023年,星期二3.某些根式的不定積分令令被積函數(shù)為簡單根式的有理

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論