概率論與數(shù)理統(tǒng)計公式整理兩篇_第1頁
概率論與數(shù)理統(tǒng)計公式整理兩篇_第2頁
概率論與數(shù)理統(tǒng)計公式整理兩篇_第3頁
概率論與數(shù)理統(tǒng)計公式整理兩篇_第4頁
概率論與數(shù)理統(tǒng)計公式整理兩篇_第5頁
已閱讀5頁,還剩52頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1第1章隨機(jī)事件及其概率(1)排列組合公式從m個人中挑出n個人進(jìn)行排列的可能數(shù)。從m個人中挑出n個人進(jìn)行組合的可能數(shù)。(2)加法和乘法原理加法原理(兩種方法均能完成此事):m+n某件事由兩種方法來完成,第一種方法可由m種方法完成,第二種方法可由n種方法來完成,則這件事可由m+n種方法來完成。乘法原理(兩個步驟分別不能完成這件事):m×n某件事由兩個步驟來完成,第一個步驟可由m種方法完成,第二個步驟可由n種方法來完成,則這件事可由m×n種方法來完成。(3)一些常見排列重復(fù)排列和非重復(fù)排列(有序)對立事件(至少有一個)順序問題(4)隨機(jī)試驗和隨機(jī)事件如果一個試驗在相同條件下可以重復(fù)進(jìn)行,而每次試驗的可能結(jié)果不止一個,但在進(jìn)行一次試驗之前卻不能斷言它出現(xiàn)哪個結(jié)果,則稱這種試驗為隨機(jī)試驗。試驗的可能結(jié)果稱為隨機(jī)事件。(5)基本事件、樣本空間和事件在一個試驗下,不管事件有多少個,總可以從其中找出這樣一組事件,它具有如下性質(zhì):①每進(jìn)行一次試驗,必須發(fā)生且只能發(fā)生這一組中的一個事件;②任何事件,都是由這一組中的部分事件組成的。這樣一組事件中的每一個事件稱為基本事件,用來表示?;臼录娜w,稱為試驗的樣本空間,用表示。一個事件就是由中的部分點(基本事件)組成的集合。通常用大寫字母A,B,C,…表示事件,它們是的子集。為必然事件,?為不可能事件。不可能事件(?)的概率為零,而概率為零的事件不一定是不可能事件;同理,必然事件(Ω)的概率為1,而概率為1的事件也不一定是必然事件。(6)事件的關(guān)系與運算①關(guān)系:如果事件A的組成部分也是事件B的組成部分,(A發(fā)生必有事件B發(fā)生):如果同時有,,則稱事件A與事件B等價,或稱A等于B:A=B。A、B中至少有一個發(fā)生的事件:AB,或者A+B。屬于A而不屬于B的部分所構(gòu)成的事件,稱為A與B的差,記為A-B,也可表示為A-AB或者,它表示A發(fā)生而B不發(fā)生的事件。A、B同時發(fā)生:AB,或者AB。AB=?,則表示A與B不可能同時發(fā)生,稱事件A與事件B互不相容或者互斥?;臼录腔ゲ幌嗳莸?。-A稱為事件A的逆事件,或稱A的對立事件,記為。它表示A不發(fā)生的事件?;コ馕幢貙α?。②運算:結(jié)合率:A(BC)=(AB)CA∪(B∪C)=(A∪B)∪C分配率:(AB)∪C=(A∪C)∩(B∪C)(A∪B)∩C=(AC)∪(BC)德摩根率:,(7)概率的公理化定義設(shè)為樣本空間,為事件,對每一個事件都有一個實數(shù)P(A),若滿足下列三個條件:1°0≤P(A)≤1,2°P(Ω)=13°對于兩兩互不相容的事件,,…有常稱為可列(完全)可加性。則稱P(A)為事件的概率。(8)古典概型1°,2°。設(shè)任一事件,它是由組成的,則有P(A)==(9)幾何概型若隨機(jī)試驗的結(jié)果為無限不可數(shù)并且每個結(jié)果出現(xiàn)的可能性均勻,同時樣本空間中的每一個基本事件可以使用一個有界區(qū)域來描述,則稱此隨機(jī)試驗為幾何概型。對任一事件A,。其中L為幾何度量(長度、面積、體積)。(10)加法公式P(A+B)=P(A)+P(B)-P(AB)當(dāng)P(AB)=0時,P(A+B)=P(A)+P(B)(11)減法公式P(A-B)=P(A)-P(AB)當(dāng)BA時,P(A-B)=P(A)-P(B)當(dāng)A=Ω時,P()=1-P(B)(12)條件概率定義設(shè)A、B是兩個事件,且P(A)>0,則稱為事件A發(fā)生條件下,事件B發(fā)生的條件概率,記為。條件概率是概率的一種,所有概率的性質(zhì)都適合于條件概率。例如P(Ω/B)=1P(/A)=1-P(B/A)(13)乘法公式乘法公式:更一般地,對事件A1,A2,…An,若P(A1A2…An-1…………。(14)獨立性①兩個事件的獨立性設(shè)事件、滿足,則稱事件、是相互獨立的。若事件、相互獨立,且,則有若事件、相互獨立,則可得到與、與、與也都相互獨立。必然事件和不可能事件?與任何事件都相互獨立。?與任何事件都互斥。②多個事件的獨立性設(shè)ABC是三個事件,如果滿足兩兩獨立的條件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)并且同時滿足P(ABC)=P(A)P(B)P(C)那么A、B、C相互獨立。對于n個事件類似。(15)全概公式設(shè)事件滿足1°兩兩互不相容,,2°,則有。(16)貝葉斯公式設(shè)事件,,…,及滿足1°,,…,兩兩互不相容,>0,1,2,…,,2°,,則,i=1,2,…n。此公式即為貝葉斯公式。,(,,…,),通常叫先驗概率。,(,,…,),通常稱為后驗概率。貝葉斯公式反映了“因果”的概率規(guī)律,并作出了“由果朔因”的推斷。(17)伯努利概型我們作了次試驗,且滿足每次試驗只有兩種可能結(jié)果,發(fā)生或不發(fā)生;次試驗是重復(fù)進(jìn)行的,即發(fā)生的概率每次均一樣;每次試驗是獨立的,即每次試驗發(fā)生與否與其他次試驗發(fā)生與否是互不影響的。這種試驗稱為伯努利概型,或稱為重伯努利試驗。用表示每次試驗發(fā)生的概率,則發(fā)生的概率為,用表示重伯努利試驗中出現(xiàn)次的概率,,。第二章隨機(jī)變量及其分布(1)離散型隨機(jī)變量的分布律設(shè)離散型隨機(jī)變量的可能取值為Xk(k=1,2,…)且取各個值的概率,即事件(X=Xk)的概率為P(X=xk)=pk,k=1,2,…,則稱上式為離散型隨機(jī)變量的概率分布或分布律。有時也用分布列的形式給出:。顯然分布律應(yīng)滿足下列條件:(1),,(2)。(2)連續(xù)型隨機(jī)變量的分布密度設(shè)是隨機(jī)變量的分布函數(shù),若存在非負(fù)函數(shù),對任意實數(shù),有,則稱為連續(xù)型隨機(jī)變量。稱為的概率密度函數(shù)或密度函數(shù),簡稱概率密度。密度函數(shù)具有下面4個性質(zhì):1°。2°。(3)離散與連續(xù)型隨機(jī)變量的關(guān)系積分元在連續(xù)型隨機(jī)變量理論中所起的作用與在離散型隨機(jī)變量理論中所起的作用相類似。(4)分布函數(shù)設(shè)為隨機(jī)變量,是任意實數(shù),則函數(shù)稱為隨機(jī)變量X的分布函數(shù),本質(zhì)上是一個累積函數(shù)??梢缘玫絏落入?yún)^(qū)間的概率。分布函數(shù)表示隨機(jī)變量落入?yún)^(qū)間(–∞,x]內(nèi)的概率。分布函數(shù)具有如下性質(zhì):1°;2°是單調(diào)不減的函數(shù),即時,有;3°,;4°,即是右連續(xù)的;5°。對于離散型隨機(jī)變量,;對于連續(xù)型隨機(jī)變量,。(5)八大分布0-1分布P(X=1)=p,P(X=0)=q二項分布在重貝努里試驗中,設(shè)事件發(fā)生的概率為。事件發(fā)生的次數(shù)是隨機(jī)變量,設(shè)為,則可能取值為。,其中,則稱隨機(jī)變量服從參數(shù)為,的二項分布。記為。當(dāng)時,,,這就是(0-1)分布,所以(0-1)分布是二項分布的特例。泊松分布設(shè)隨機(jī)變量的分布律為,,,則稱隨機(jī)變量服從參數(shù)為的泊松分布,記為或者P()。泊松分布為二項分布的極限分布(np=λ,n→∞)。超幾何分布隨機(jī)變量X服從參數(shù)為n,N,M的超幾何分布,記為H(n,N,M)。幾何分布,其中p≥0,q=1-p。隨機(jī)變量X服從參數(shù)為p的幾何分布,記為G(p)。均勻分布設(shè)隨機(jī)變量的值只落在[a,b]內(nèi),其密度函數(shù)在[a,b]上為常數(shù),即

a≤xa≤x≤b則稱隨機(jī)變量在[a,b]上服從均勻分布,記為X~U(a,b)。分布函數(shù)為

a≤x≤ba≤x≤b0,x<a,

1,1,x>b。

當(dāng)a≤x1<x2≤b時,X落在區(qū)間()內(nèi)的概率為。指數(shù)分布,

0,,

0,,

其中,則稱隨機(jī)變量X服從參數(shù)為的指數(shù)分布。X的分布函數(shù)為,x<0。

x<0。

記住積分公式:正態(tài)分布設(shè)隨機(jī)變量的密度函數(shù)為,,其中、為常數(shù),則稱隨機(jī)變量服從參數(shù)為、的正態(tài)分布或高斯(Gauss)分布,記為。具有如下性質(zhì):1°的圖形是關(guān)于對稱的;2°當(dāng)時,為最大值;若,則的分布函數(shù)為。。參數(shù)、時的正態(tài)分布稱為標(biāo)準(zhǔn)正態(tài)分布,記為,其密度函數(shù)記為,,分布函數(shù)為。是不可求積函數(shù),其函數(shù)值,已編制成表可供查用。Φ(-x)=1-Φ(x)且Φ(0)=。如果~,則~。。(6)分位數(shù)下分位表:;上分位表:。(7)函數(shù)分布離散型已知的分布列為

,的分布列(互不相等)如下:,若有某些相等,則應(yīng)將對應(yīng)的相加作為的概率。連續(xù)型先利用X的概率密度fX(x)寫出Y的分布函數(shù)FY(y)=P(g(X)≤y),再利用變上下限積分的求導(dǎo)公式求出fY(y)。第三章二維隨機(jī)變量及其分布(1)聯(lián)合分布離散型如果二維隨機(jī)向量(X,Y)的所有可能取值為至多可列個有序?qū)Γ▁,y),則稱為離散型隨機(jī)量。設(shè)=(X,Y)的所有可能取值為,且事件{=}的概率為pij,,稱為=(X,Y)的分布律或稱為X和Y的聯(lián)合分布律。聯(lián)合分布有時也用下面的概率分布表來表示:YXy1y2…yj…x1p11p12…p1j…x2p21p22…p2j…xipi1……這里pij具有下面兩個性質(zhì):(1)pij≥0(i,j=1,2,…);(2)連續(xù)型對于二維隨機(jī)向量,如果存在非負(fù)函數(shù),使對任意一個其鄰邊分別平行于坐標(biāo)軸的矩形區(qū)域D,即D={(X,Y)|a<x<b,c<y<d}有則稱為連續(xù)型隨機(jī)向量;并稱f(x,y)為=(X,Y)的分布密度或稱為X和Y的聯(lián)合分布密度。 分布密度f(x,y)具有下面兩個性質(zhì):f(x,y)≥0;(2)(2)二維隨機(jī)變量的本質(zhì)(3)聯(lián)合分布函數(shù)設(shè)(X,Y)為二維隨機(jī)變量,對于任意實數(shù)x,y,二元函數(shù)稱為二維隨機(jī)向量(X,Y)的分布函數(shù),或稱為隨機(jī)變量X和Y的聯(lián)合分布函數(shù)。 分布函數(shù)是一個以全平面為其定義域,以事件的概率為函數(shù)值的一個實值函數(shù)。分布函數(shù)F(x,y)具有以下的基本性質(zhì):(1)(2)F(x,y)分別對x和y是非減的,即當(dāng)x2>x1時,有F(x2,y)≥F(x1,y);當(dāng)y2>y1時,有F(x,y2)≥F(x,y1);(3)F(x,y)分別對x和y是右連續(xù)的,即(4)(5)對于.(4)離散型與連續(xù)型的關(guān)系(5)邊緣分布離散型X的邊緣分布為;Y的邊緣分布為。連續(xù)型X的邊緣分布密度為Y的邊緣分布密度為(6)條件分布離散型在已知X=xi的條件下,Y取值的條件分布為在已知Y=yj的條件下,X取值的條件分布為連續(xù)型在已知Y=y的條件下,X的條件分布密度為;在已知X=x的條件下,Y的條件分布密度為(7)獨立性一般型F(X,Y)=FX(x)FY(y)離散型有零不獨立連續(xù)型f(x,y)=fX(x)fY(y)直接判斷,充要條件:①可分離變量②正概率密度區(qū)間為矩形二維正態(tài)分布=0隨機(jī)變量的函數(shù)若X1,X2,…Xm,Xm+1,…Xn相互獨立,h,g為連續(xù)函數(shù),則:h(X1,X2,…Xm)和g(Xm+1,…Xn)相互獨立。特例:若X與Y獨立,則:h(X)和g(Y)獨立。例如:若X與Y獨立,則:3X+1和5Y-2獨立。(8)二維均勻分布設(shè)隨機(jī)向量(X,Y)的分布密度函數(shù)為其中SD為區(qū)域D的面積,則稱(X,Y)服從D上的均勻分布,記為(X,Y)~U(D)。例如圖3.1、圖3.2和圖3.3。y1D1O1 x圖3.1yD2D21 O 2x圖3.2yD3dD3cOabx圖3.3(9)二維正態(tài)分布設(shè)隨機(jī)向量(X,Y)的分布密度函數(shù)為其中是5個參數(shù),則稱(X,Y)服從二維正態(tài)分布,記為(X,Y)~N(由邊緣密度的計算公式,可以推出二維正態(tài)分布的兩個邊緣分布仍為正態(tài)分布,即X~N(但是若X~N(,(X,Y)未必是二維正態(tài)分布。(10)函數(shù)分布Z=X+Y根據(jù)定義計算:對于連續(xù)型,fZ(z)=兩個獨立的正態(tài)分布的和仍為正態(tài)分布()。n個相互獨立的正態(tài)分布的線性組合,仍服從正態(tài)分布。,Z=max,min(X1,X2,…Xn)若相互獨立,其分布函數(shù)分別為,則Z=max,min(X1,X2,…Xn)的分布函數(shù)為:分布設(shè)n個隨機(jī)變量相互獨立,且服從標(biāo)準(zhǔn)正態(tài)分布,可以證明它們的平方和的分布密度為我們稱隨機(jī)變量W服從自由度為n的分布,記為W~,其中所謂自由度是指獨立正態(tài)隨機(jī)變量的個數(shù),它是隨機(jī)變量分布中的一個重要參數(shù)。分布滿足可加性:設(shè)則t分布設(shè)X,Y是兩個相互獨立的隨機(jī)變量,且可以證明函數(shù)的概率密度為 我們稱隨機(jī)變量T服從自由度為n的t分布,記為T~t(n)。F分布設(shè),且X與Y獨立,可以證明的概率密度函數(shù)為我們稱隨機(jī)變量F服從第一個自由度為n1,第二個自由度為n2的F分布,記為F~f(n1,n2).第四章隨機(jī)變量的數(shù)字特征(1)一維隨機(jī)變量的數(shù)字特征離散型連續(xù)型期望期望就是平均值設(shè)X是離散型隨機(jī)變量,其分布律為P()=pk,k=1,2,…,n,(要求絕對收斂)設(shè)X是連續(xù)型隨機(jī)變量,其概率密度為f(x),(要求絕對收斂)函數(shù)的期望Y=g(X)Y=g(X)方差D(X)=E[X-E(X)]2,標(biāo)準(zhǔn)差,矩①對于正整數(shù)k,稱隨機(jī)變量X的k次冪的數(shù)學(xué)期望為X的k階原點矩,記為vk,即νk=E(Xk)=,k=1,2,….②對于正整數(shù)k,稱隨機(jī)變量X與E(X)差的k次冪的數(shù)學(xué)期望為X的k階中心矩,記為,即=,k=1,2,….①對于正整數(shù)k,稱隨機(jī)變量X的k次冪的數(shù)學(xué)期望為X的k階原點矩,記為vk,即νk=E(Xk)=k=1,2,….②對于正整數(shù)k,稱隨機(jī)變量X與E(X)差的k次冪的數(shù)學(xué)期望為X的k階中心矩,記為,即=k=1,2,….切比雪夫不等式設(shè)隨機(jī)變量X具有數(shù)學(xué)期望E(X)=μ,方差D(X)=σ2,則對于任意正數(shù)ε,有下列切比雪夫不等式切比雪夫不等式給出了在未知X的分布的情況下,對概率的一種估計,它在理論上有重要意義。(2)期望的性質(zhì)E(C)=CE(CX)=CE(X)E(X+Y)=E(X)+E(Y),E(XY)=E(X)E(Y),充分條件:X和Y獨立;充要條件:X和Y不相關(guān)。(3)方差的性質(zhì)D(C)=0;E(C)=CD(aX)=a2D(X);E(aX)=aE(X)D(aX+b)=a2D(X);E(aX+b)=aE(X)+bD(X)=E(X2)-E2(X)D(X±Y)=D(X)+D(Y),充分條件:X和Y獨立;充要條件:X和Y不相關(guān)。D(X±Y)=D(X)+D(Y)±2E[(X-E(X))(Y-E(Y))],無條件成立。而E(X+Y)=E(X)+E(Y),無條件成立。(4)常見分布的期望和方差期望方差0-1分布p二項分布np泊松分布幾何分布超幾何分布均勻分布指數(shù)分布正態(tài)分布n2nt分布0(n>2)(5)二維隨機(jī)變量的數(shù)字特征期望函數(shù)的期望==方差協(xié)方差對于隨機(jī)變量X與Y,稱它們的二階混合中心矩為X與Y的協(xié)方差或相關(guān)矩,記為,即與記號相對應(yīng),X與Y的方差D(X)與D(Y)也可分別記為與。相關(guān)系數(shù)對于隨機(jī)變量X與Y,如果D(X)>0,D(Y)>0,則稱為X與Y的相關(guān)系數(shù),記作(有時可簡記為)。 ||≤1,當(dāng)||=1時,稱X與Y完全相關(guān):完全相關(guān)而當(dāng)時,稱X與Y不相關(guān)。以下五個命題是等價的:①;②cov(X,Y)=0;③E(XY)=E(X)E(Y);④D(X+Y)=D(X)+D(Y);⑤D(X-Y)=D(X)+D(Y).協(xié)方差矩陣混合矩對于隨機(jī)變量X與Y,如果有存在,則稱之為X與Y的k+l階混合原點矩,記為;k+l階混合中心矩記為:(6)協(xié)方差的性質(zhì)cov(X,Y)=cov(Y,X);cov(aX,bY)=abcov(X,Y);cov(X1+X2,Y)=cov(X1,Y)+cov(X2,Y);cov(X,Y)=E(XY)-E(X)E(Y).(7)獨立和不相關(guān)若隨機(jī)變量X與Y相互獨立,則;反之不真。若(X,Y)~N(),則X與Y相互獨立的充要條件是X和Y不相關(guān)。第五章大數(shù)定律和中心極限定理(1)大數(shù)定律切比雪夫大數(shù)定律設(shè)隨機(jī)變量X1,X2,…相互獨立,均具有有限方差,且被同一常數(shù)C所界:D(Xi)<C(i=1,2,…),則對于任意的正數(shù)ε,有 特殊情形:若X1,X2,…具有相同的數(shù)學(xué)期望E(XI)=μ,則上式成為伯努利大數(shù)定律設(shè)μ是n次獨立試驗中事件A發(fā)生的次數(shù),p是事件A在每次試驗中發(fā)生的概率,則對于任意的正數(shù)ε,有 伯努利大數(shù)定律說明,當(dāng)試驗次數(shù)n很大時,事件A發(fā)生的頻率與概率有較大判別的可能性很小,即這就以嚴(yán)格的數(shù)學(xué)形式描述了頻率的穩(wěn)定性。辛欽大數(shù)定律設(shè)X1,X2,…,Xn,…是相互獨立同分布的隨機(jī)變量序列,且E(Xn)=μ,則對于任意的正數(shù)ε有(2)中心極限定理列維-林德伯格定理設(shè)隨機(jī)變量X1,X2,…相互獨立,服從同一分布,且具有相同的數(shù)學(xué)期望和方差:,則隨機(jī)變量的分布函數(shù)Fn(x)對任意的實數(shù)x,有此定理也稱為獨立同分布的中心極限定理。棣莫弗-拉普拉斯定理設(shè)隨機(jī)變量為具有參數(shù)n,p(0<p<1)的二項分布,則對于任意實數(shù)x,有(3)二項定理若當(dāng),則 超幾何分布的極限分布為二項分布。(4)泊松定理若當(dāng),則 其中k=0,1,2,…,n,…。二項分布的極限分布為泊松分布。第六章樣本及抽樣分布(1)數(shù)理統(tǒng)計的基本概念總體在數(shù)理統(tǒng)計中,常把被考察對象的某一個(或多個)指標(biāo)的全體稱為總體(或母體)。我們總是把總體看成一個具有分布的隨機(jī)變量(或隨機(jī)向量)。個體總體中的每一個單元稱為樣品(或個體)。樣本我們把從總體中抽取的部分樣品稱為樣本。樣本中所含的樣品數(shù)稱為樣本容量,一般用n表示。在一般情況下,總是把樣本看成是n個相互獨立的且與總體有相同分布的隨機(jī)變量,這樣的樣本稱為簡單隨機(jī)樣本。在泛指任一次抽取的結(jié)果時,表示n個隨機(jī)變量(樣本);在具體的一次抽取之后,表示n個具體的數(shù)值(樣本值)。我們稱之為樣本的兩重性。樣本函數(shù)和統(tǒng)計量設(shè)為總體的一個樣本,稱 ()為樣本函數(shù),其中為一個連續(xù)函數(shù)。如果中不包含任何未知參數(shù),則稱()為一個統(tǒng)計量。常見統(tǒng)計量及其性質(zhì)樣本均值 樣本方差 樣本標(biāo)準(zhǔn)差 樣本k階原點矩 樣本k階中心矩,,,,其中,為二階中心矩。(2)正態(tài)總體下的四大分布正態(tài)分布設(shè)為來自正態(tài)總體的一個樣本,則樣本函數(shù)t分布設(shè)為來自正態(tài)總體的一個樣本,則樣本函數(shù)其中t(n-1)表示自由度為n-1的t分布。設(shè)為來自正態(tài)總體的一個樣本,則樣本函數(shù)其中表示自由度為n-1的分布。F分布設(shè)為來自正態(tài)總體的一個樣本,而為來自正態(tài)總體的一個樣本,則樣本函數(shù)其中 表示第一自由度為,第二自由度為的F分布。(3)正態(tài)總體下分布的性質(zhì)與獨立。第七章參數(shù)估計(1)點估計矩估計設(shè)總體X的分布中包含有未知數(shù),則其分布函數(shù)可以表成它的k階原點矩中也包含了未知參數(shù),即。又設(shè)為總體X的n個樣本值,其樣本的k階原點矩為 這樣,我們按照“當(dāng)參數(shù)等于其估計量時,總體矩等于相應(yīng)的樣本矩”的原則建立方程,即有由上面的m個方程中,解出的m個未知參數(shù)即為參數(shù)()的矩估計量。若為的矩估計,為連續(xù)函數(shù),則為的矩估計。極大似然估計當(dāng)總體X為連續(xù)型隨機(jī)變量時,設(shè)其分布密度為,其中為未知參數(shù)。又設(shè)為總體的一個樣本,稱為樣本的似然函數(shù),簡記為Ln. 當(dāng)總體X為離型隨機(jī)變量時,設(shè)其分布律為,則稱為樣本的似然函數(shù)。 若似然函數(shù)在處取到最大值,則稱分別為的最大似然估計值,相應(yīng)的統(tǒng)計量稱為最大似然估計量。若為的極大似然估計,為單調(diào)函數(shù),則為的極大似然估計。(2)估計量的評選標(biāo)準(zhǔn)無偏性設(shè)為未知參數(shù)的估計量。若E()=,則稱為的無偏估計量。E()=E(X),E(S2)=D(X)有效性設(shè)和是未知參數(shù)的兩個無偏估計量。若,則稱有效。一致性設(shè)是的一串估計量,如果對于任意的正數(shù),都有則稱為的一致估計量(或相合估計量)。若為的無偏估計,且則為的一致估計。只要總體的E(X)和D(X)存在,一切樣本矩和樣本矩的連續(xù)函數(shù)都是相應(yīng)總體的一致估計量。(3)區(qū)間估計置信區(qū)間和置信度設(shè)總體X含有一個待估的未知參數(shù)。如果我們從樣本出發(fā),找出兩個統(tǒng)計量與,使得區(qū)間以的概率包含這個待估參數(shù),即那么稱區(qū)間為的置信區(qū)間,為該區(qū)間的置信度(或置信水平)。單正態(tài)總體的期望和方差的區(qū)間估計 設(shè)為總體的一個樣本,在置信度為下,我們來確定的置信區(qū)間。具體步驟如下:(i)選擇樣本函數(shù);(ii)由置信度,查表找分位數(shù);(iii)導(dǎo)出置信區(qū)間。已知方差,估計均值(i)選擇樣本函數(shù)(ii)查表找分位數(shù)(iii)導(dǎo)出置信區(qū)間未知方差,估計均值(i)選擇樣本函數(shù) (ii)查表找分位數(shù) (iii)導(dǎo)出置信區(qū)間方差的區(qū)間估計(i)選擇樣本函數(shù)(ii)查表找分位數(shù) (iii)導(dǎo)出的置信區(qū)間第八章假設(shè)檢驗基本思想假設(shè)檢驗的統(tǒng)計思想是,概率很小的事件在一次試驗中可以認(rèn)為基本上是不會發(fā)生的,即小概率原理。 為了檢驗一個假設(shè)H0是否成立。我們先假定H0是成立的。如果根據(jù)這個假定導(dǎo)致了一個不合理的事件發(fā)生,那就表明原來的假定H0是不正確的,我們拒絕接受H0;如果由此沒有導(dǎo)出不合理的現(xiàn)象,則不能拒絕接受H0,我們稱H0是相容的。與H0相對的假設(shè)稱為備擇假設(shè),用H1表示。 這里所說的小概率事件就是事件,其概率就是檢驗水平α,通常我們?nèi)ˇ?0.05,有時也取0.01或0.10。基本步驟假設(shè)檢驗的基本步驟如下:提出零假設(shè)H0;選擇統(tǒng)計量K;對于檢驗水平α查表找分位數(shù)λ;由樣本值計算統(tǒng)計量之值K;將進(jìn)行比較,作出判斷:當(dāng)時否定H0,否則認(rèn)為H0相容。兩類錯誤第一類錯誤當(dāng)H0為真時,而樣本值卻落入了否定域,按照我們規(guī)定的檢驗法則,應(yīng)當(dāng)否定H0。這時,我們把客觀上H0成立判為H0為不成立(即否定了真實的假設(shè)),稱這種錯誤為“以真當(dāng)假”的錯誤或第一類錯誤,記為犯此類錯誤的概率,即P{否定H0|H0為真}=;此處的α恰好為檢驗水平。第二類錯誤當(dāng)H1為真時,而樣本值卻落入了相容域,按照我們規(guī)定的檢驗法則,應(yīng)當(dāng)接受H0。這時,我們把客觀上H0。不成立判為H0成立(即接受了不真實的假設(shè)),稱這種錯誤為“以假當(dāng)真”的錯誤或第二類錯誤,記為犯此類錯誤的概率,即P{接受H0|H1為真}=。兩類錯誤的關(guān)系人們當(dāng)然希望犯兩類錯誤的概率同時都很小。但是,當(dāng)容量n一定時,變小,則變大;相反地,變小,則變大。取定要想使變小,則必須增加樣本容量。在實際使用時,通常人們只能控制犯第一類錯誤的概率,即給定顯著性水平α。α大小的選取應(yīng)根據(jù)實際情況而定。當(dāng)我們寧可“以假為真”、而不愿“以真當(dāng)假”時,則應(yīng)把α取得很小,如0.01,甚至0.001。反之,則應(yīng)把α取得大些。單正態(tài)總體均值和方差的假設(shè)檢驗條件零假設(shè)統(tǒng)計量對應(yīng)樣本函數(shù)分布否定域已知N(0,1)未知未知第1章隨機(jī)事件及其概率(1)排列組合公式從m個人中挑出n個人進(jìn)行排列的可能數(shù)。從m個人中挑出n個人進(jìn)行組合的可能數(shù)。(2)加法和乘法原理加法原理(兩種方法均能完成此事):m+n某件事由兩種方法來完成,第一種方法可由m種方法完成,第二種方法可由n種方法來完成,則這件事可由m+n種方法來完成。乘法原理(兩個步驟分別不能完成這件事):m×n某件事由兩個步驟來完成,第一個步驟可由m種方法完成,第二個步驟可由n種方法來完成,則這件事可由m×n種方法來完成。(3)一些常見排列重復(fù)排列和非重復(fù)排列(有序)對立事件(至少有一個)順序問題(4)隨機(jī)試驗和隨機(jī)事件如果一個試驗在相同條件下可以重復(fù)進(jìn)行,而每次試驗的可能結(jié)果不止一個,但在進(jìn)行一次試驗之前卻不能斷言它出現(xiàn)哪個結(jié)果,則稱這種試驗為隨機(jī)試驗。試驗的可能結(jié)果稱為隨機(jī)事件。(5)基本事件、樣本空間和事件在一個試驗下,不管事件有多少個,總可以從其中找出這樣一組事件,它具有如下性質(zhì):①每進(jìn)行一次試驗,必須發(fā)生且只能發(fā)生這一組中的一個事件;②任何事件,都是由這一組中的部分事件組成的。這樣一組事件中的每一個事件稱為基本事件,用來表示?;臼录娜w,稱為試驗的樣本空間,用表示。一個事件就是由中的部分點(基本事件)組成的集合。通常用大寫字母A,B,C,…表示事件,它們是的子集。為必然事件,?為不可能事件。不可能事件(?)的概率為零,而概率為零的事件不一定是不可能事件;同理,必然事件(Ω)的概率為1,而概率為1的事件也不一定是必然事件。(6)事件的關(guān)系與運算①關(guān)系:如果事件A的組成部分也是事件B的組成部分,(A發(fā)生必有事件B發(fā)生):如果同時有,,則稱事件A與事件B等價,或稱A等于B:A=B。A、B中至少有一個發(fā)生的事件:AB,或者A+B。屬于A而不屬于B的部分所構(gòu)成的事件,稱為A與B的差,記為A-B,也可表示為A-AB或者,它表示A發(fā)生而B不發(fā)生的事件。A、B同時發(fā)生:AB,或者AB。AB=?,則表示A與B不可能同時發(fā)生,稱事件A與事件B互不相容或者互斥?;臼录腔ゲ幌嗳莸?。-A稱為事件A的逆事件,或稱A的對立事件,記為。它表示A不發(fā)生的事件?;コ馕幢貙α?。②運算:結(jié)合率:A(BC)=(AB)CA∪(B∪C)=(A∪B)∪C分配率:(AB)∪C=(A∪C)∩(B∪C)(A∪B)∩C=(AC)∪(BC)德摩根率:,(7)概率的公理化定義設(shè)為樣本空間,為事件,對每一個事件都有一個實數(shù)P(A),若滿足下列三個條件:1°0≤P(A)≤1,2°P(Ω)=13°對于兩兩互不相容的事件,,…有常稱為可列(完全)可加性。則稱P(A)為事件的概率。(8)古典概型1°,2°。設(shè)任一事件,它是由組成的,則有P(A)==(9)幾何概型若隨機(jī)試驗的結(jié)果為無限不可數(shù)并且每個結(jié)果出現(xiàn)的可能性均勻,同時樣本空間中的每一個基本事件可以使用一個有界區(qū)域來描述,則稱此隨機(jī)試驗為幾何概型。對任一事件A,。其中L為幾何度量(長度、面積、體積)。(10)加法公式P(A+B)=P(A)+P(B)-P(AB)當(dāng)P(AB)=0時,P(A+B)=P(A)+P(B)(11)減法公式P(A-B)=P(A)-P(AB)當(dāng)BA時,P(A-B)=P(A)-P(B)當(dāng)A=Ω時,P()=1-P(B)(12)條件概率定義設(shè)A、B是兩個事件,且P(A)>0,則稱為事件A發(fā)生條件下,事件B發(fā)生的條件概率,記為。條件概率是概率的一種,所有概率的性質(zhì)都適合于條件概率。例如P(Ω/B)=1P(/A)=1-P(B/A)(13)乘法公式乘法公式:更一般地,對事件A1,A2,…An,若P(A1A2…An-1)>0…………。(14)獨立性①兩個事件的獨立性設(shè)事件、滿足,則稱事件、是相互獨立的。若事件、相互獨立,且,則有若事件、相互獨立,則可得到與、與、與也都相互獨立。必然事件和不可能事件?與任何事件都相互獨立。?與任何事件都互斥。②多個事件的獨立性設(shè)ABC是三個事件,如果滿足兩兩獨立的條件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)并且同時滿足P(ABC)=P(A)P(B)P(C)那么A、B、C相互獨立。對于n個事件類似。(15)全概公式設(shè)事件滿足1°兩兩互不相容,,2°,則有。(16)貝葉斯公式設(shè)事件,,…,及滿足1°,,…,兩兩互不相容,>0,1,2,…,,2°,,則,i=1,2,…n。此公式即為貝葉斯公式。,(,,…,),通常叫先驗概率。,(,,…,),通常稱為后驗概率。貝葉斯公式反映了“因果”的概率規(guī)律,并作出了“由果朔因”的推斷。(17)伯努利概型我們作了次試驗,且滿足每次試驗只有兩種可能結(jié)果,發(fā)生或不發(fā)生;次試驗是重復(fù)進(jìn)行的,即發(fā)生的概率每次均一樣;每次試驗是獨立的,即每次試驗發(fā)生與否與其他次試驗發(fā)生與否是互不影響的。這種試驗稱為伯努利概型,或稱為重伯努利試驗。用表示每次試驗發(fā)生的概率,則發(fā)生的概率為,用表示重伯努利試驗中出現(xiàn)次的概率,,。第二章隨機(jī)變量及其分布(1)離散型隨機(jī)變量的分布律設(shè)離散型隨機(jī)變量的可能取值為Xk(k=1,2,…)且取各個值的概率,即事件(X=Xk)的概率為P(X=xk)=pk,k=1,2,…,則稱上式為離散型隨機(jī)變量的概率分布或分布律。有時也用分布列的形式給出:。顯然分布律應(yīng)滿足下列條件:(1),,(2)。(2)連續(xù)型隨機(jī)變量的分布密度設(shè)是隨機(jī)變量的分布函數(shù),若存在非負(fù)函數(shù),對任意實數(shù),有,則稱為連續(xù)型隨機(jī)變量。稱為的概率密度函數(shù)或密度函數(shù),簡稱概率密度。密度函數(shù)具有下面4個性質(zhì):1°。2°。(3)離散與連續(xù)型隨機(jī)變量的關(guān)系積分元在連續(xù)型隨機(jī)變量理論中所起的作用與在離散型隨機(jī)變量理論中所起的作用相類似。(4)分布函數(shù)設(shè)為隨機(jī)變量,是任意實數(shù),則函數(shù)稱為隨機(jī)變量X的分布函數(shù),本質(zhì)上是一個累積函數(shù)??梢缘玫絏落入?yún)^(qū)間的概率。分布函數(shù)表示隨機(jī)變量落入?yún)^(qū)間(–∞,x]內(nèi)的概率。分布函數(shù)具有如下性質(zhì):1°;2°是單調(diào)不減的函數(shù),即時,有;3°,;4°,即是右連續(xù)的;5°。對于離散型隨機(jī)變量,;對于連續(xù)型隨機(jī)變量,。(5)八大分布0-1分布P(X=1)=p,P(X=0)=q二項分布在重貝努里試驗中,設(shè)事件發(fā)生的概率為。事件發(fā)生的次數(shù)是隨機(jī)變量,設(shè)為,則可能取值為。,其中,則稱隨機(jī)變量服從參數(shù)為,的二項分布。記為。當(dāng)時,,,這就是(0-1)分布,所以(0-1)分布是二項分布的特例。泊松分布設(shè)隨機(jī)變量的分布律為,,,則稱隨機(jī)變量服從參數(shù)為的泊松分布,記為或者P()。泊松分布為二項分布的極限分布(np=λ,n→∞)。超幾何分布隨機(jī)變量X服從參數(shù)為n,N,M的超幾何分布,記為H(n,N,M)。幾何分布,其中p≥0,q=1-p。隨機(jī)變量X服從參數(shù)為p的幾何分布,記為G(p)。均勻分布設(shè)隨機(jī)變量的值只落在[a,b]內(nèi),其密度函數(shù)在[a,b]上為常數(shù),即

a≤xa≤x≤b則稱隨機(jī)變量在[a,b]上服從均勻分布,記為X~U(a,b)。分布函數(shù)為

a≤x≤ba≤x≤b0,x<a,

1,1,x>b。

當(dāng)a≤x1<x2≤b時,X落在區(qū)間()內(nèi)的概率為。指數(shù)分布,

0,,0,,

其中,則稱隨機(jī)變量X服從參數(shù)為的指數(shù)分布。X的分布函數(shù)為,x<0。

x<0。

記住積分公式:正態(tài)分布設(shè)隨機(jī)變量的密度函數(shù)為,,其中、為常數(shù),則稱隨機(jī)變量服從參數(shù)為、的正態(tài)分布或高斯(Gauss)分布,記為。具有如下性質(zhì):1°的圖形是關(guān)于對稱的;2°當(dāng)時,為最大值;若,則的分布函數(shù)為。。參數(shù)、時的正態(tài)分布稱為標(biāo)準(zhǔn)正態(tài)分布,記為,其密度函數(shù)記為,,分布函數(shù)為。是不可求積函數(shù),其函數(shù)值,已編制成表可供查用。Φ(-x)=1-Φ(x)且Φ(0)=。如果~,則~。。(6)分位數(shù)下分位表:;上分位表:。(7)函數(shù)分布離散型已知的分布列為

,的分布列(互不相等)如下:,若有某些相等,則應(yīng)將對應(yīng)的相加作為的概率。連續(xù)型先利用X的概率密度fX(x)寫出Y的分布函數(shù)FY(y)=P(g(X)≤y),再利用變上下限積分的求導(dǎo)公式求出fY(y)。第三章二維隨機(jī)變量及其分布(1)聯(lián)合分布離散型如果二維隨機(jī)向量(X,Y)的所有可能取值為至多可列個有序?qū)Γ▁,y),則稱為離散型隨機(jī)量。設(shè)=(X,Y)的所有可能取值為,且事件{=}的概率為pij,,稱為=(X,Y)的分布律或稱為X和Y的聯(lián)合分布律。聯(lián)合分布有時也用下面的概率分布表來表示:YXy1y2…yj…x1p11p12…p1j…x2p21p22…p2j…xipi1……這里pij具有下面兩個性質(zhì):(1)pij≥0(i,j=1,2,…);(2)連續(xù)型對于二維隨機(jī)向量,如果存在非負(fù)函數(shù),使對任意一個其鄰邊分別平行于坐標(biāo)軸的矩形區(qū)域D,即D={(X,Y)|a<x<b,c<y<d}有則稱為連續(xù)型隨機(jī)向量;并稱f(x,y)為=(X,Y)的分布密度或稱為X和Y的聯(lián)合分布密度。 分布密度f(x,y)具有下面兩個性質(zhì):f(x,y)≥0;(2)(2)二維隨機(jī)變量的本質(zhì)(3)聯(lián)合分布函數(shù)設(shè)(X,Y)為二維隨機(jī)變量,對于任意實數(shù)x,y,二元函數(shù)稱為二維隨機(jī)向量(X,Y)的分布函數(shù),或稱為隨機(jī)變量X和Y的聯(lián)合分布函數(shù)。 分布函數(shù)是一個以全平面為其定義域,以事件的概率為函數(shù)值的一個實值函數(shù)。分布函數(shù)F(x,y)具有以下的基本性質(zhì):(1)(2)F(x,y)分別對x和y是非減的,即當(dāng)x2>x1時,有F(x2,y)≥F(x1,y);當(dāng)y2>y1時,有F(x,y2)≥F(x,y1);(3)F(x,y)分別對x和y是右連續(xù)的,即(4)(5)對于.(4)離散型與連續(xù)型的關(guān)系(5)邊緣分布離散型X的邊緣分布為;Y的邊緣分布為。連續(xù)型X的邊緣分布密度為Y的邊緣分布密度為(6)條件分布離散型在已知X=xi的條件下,Y取值的條件分布為在已知Y=yj的條件下,X取值的條件分布為連續(xù)型在已知Y=y的條件下,X的條件分布密度為;在已知X=x的條件下,Y的條件分布密度為(7)獨立性一般型F(X,Y)=FX(x)FY(y)離散型有零不獨立連續(xù)型f(x,y)=fX(x)fY(y)直接判斷,充要條件:①可分離變量②正概率密度區(qū)間為矩形二維正態(tài)分布=0隨機(jī)變量的函數(shù)若X1,X2,…Xm,Xm+1,…Xn相互獨立,h,g為連續(xù)函數(shù),則:h(X1,X2,…Xm)和g(Xm+1,…Xn)相互獨立。特例:若X與Y獨立,則:h(X)和g(Y)獨立。例如:若X與Y獨立,則:3X+1和5Y-2獨立。(8)二維均勻分布設(shè)隨機(jī)向量(X,Y)的分布密度函數(shù)為其中SD為區(qū)域D的面積,則稱(X,Y)服從D上的均勻分布,記為(X,Y)~U(D)。例如圖3.1、圖3.2和圖3.3。y1D1O1 x圖3.1yD2D21 O 2x圖3.2yD3dD3cOabx圖3.3(9)二維正態(tài)分布設(shè)隨機(jī)向量(X,Y)的分布密度函數(shù)為其中是5個參數(shù),則稱(X,Y)服從二維正態(tài)分布,記為(X,Y)~N(由邊緣密度的計算公式,可以推出二維正態(tài)分布的兩個邊緣分布仍為正態(tài)分布,即X~N(但是若X~N(,(X,Y)未必是二維正態(tài)分布。(10)函數(shù)分布Z=X+Y根據(jù)定義計算:對于連續(xù)型,fZ(z)=兩個獨立的正態(tài)分布的和仍為正態(tài)分布()。n個相互獨立的正態(tài)分布的線性組合,仍服從正態(tài)分布。,Z=max,min(X1,X2,…Xn)若相互獨立,其分布函數(shù)分別為,則Z=max,min(X1,X2,…Xn)的分布函數(shù)為:分布設(shè)n個隨機(jī)變量相互獨立,且服從標(biāo)準(zhǔn)正態(tài)分布,可以證明它們的平方和的分布密度為我們稱隨機(jī)變量W服從自由度為n的分布,記為W~,其中所謂自由度是指獨立正態(tài)隨機(jī)變量的個數(shù),它是隨機(jī)變量分布中的一個重要參數(shù)。分布滿足可加性:設(shè)則t分布設(shè)X,Y是兩個相互獨立的隨機(jī)變量,且可以證明函數(shù)的概率密度為 我們稱隨機(jī)變量T服從自由度為n的t分布,記為T~t(n)。F分布設(shè),且X與Y獨立,可以證明的概率密度函數(shù)為我們稱隨機(jī)變量F服從第一個自由度為n1,第二個自由度為n2的F分布,記為F~f(n1,n2).第四章隨機(jī)變量的數(shù)字特征(1)一維隨機(jī)變量的數(shù)字特征離散型連續(xù)型期望期望就是平均值設(shè)X是離散型隨機(jī)變量,其分布律為P()=pk,k=1,2,…,n,(要求絕對收斂)設(shè)X是連續(xù)型隨機(jī)變量,其概率密度為f(x),(要求絕對收斂)函數(shù)的期望Y=g(X)Y=g(X)方差D(X)=E[X-E(X)]2,標(biāo)準(zhǔn)差,矩①對于正整數(shù)k,稱隨機(jī)變量X的k次冪的數(shù)學(xué)期望為X的k階原點矩,記為vk,即νk=E(Xk)=,k=1,2,….②對于正整數(shù)k,稱隨機(jī)變量X與E(X)差的k次冪的數(shù)學(xué)期望為X的k階中心矩,記為,即=,k=1,2,….①對于正整數(shù)k,稱隨機(jī)變量X的k次冪的數(shù)學(xué)期望為X的k階原點矩,記為vk,即νk=E(Xk)=k=1,2,….②對于正整數(shù)k,稱隨機(jī)變量X與E(X)差的k次冪的數(shù)學(xué)期望為X的k階中心矩,記為,即=k=1,2,….切比雪夫不等式設(shè)隨機(jī)變量X具有數(shù)學(xué)期望E(X)=μ,方差D(X)=σ2,則對于任意正數(shù)ε,有下列切比雪夫不等式切比雪夫不等式給出了在未知X的分布的情況下,對概率的一種估計,它在理論上有重要意義。(2)期望的性質(zhì)E(C)=CE(CX)=CE(X)E(X+Y)=E(X)+E(Y),E(XY)=E(X)E(Y),充分條件:X和Y獨立;充要條件:X和Y不相關(guān)。(3)方差的性質(zhì)D(C)=0;E(C)=CD(aX)=a2D(X);E(aX)=aE(X)D(aX+b)=a2D(X);E(aX+b)=aE(X)+bD(X)=E(X2)-E2(X)D(X±Y)=D(X)+D(Y),充分條件:X和Y獨立;充要條件:X和Y不相關(guān)。D(X±Y)=D(X)+D(Y)±2E[(X-E(X))(Y-E(Y))],無條件成立。而E(X+Y)=E(X)+E(Y),無條件成立。(4)常見分布的期望和方差期望方差0-1分布p二項分布np泊松分布幾何分布超幾何分布均勻分布指數(shù)分布正態(tài)分布n2nt分布0(n>2)(5)二維隨機(jī)變量的數(shù)字特征期望函數(shù)的期望==方差協(xié)方差對于隨機(jī)變量X與Y,稱它們的二階混合中心矩為X與Y的協(xié)方差或相關(guān)矩,記為,即與記號相對應(yīng),X與Y的方差D(X)與D(Y)也可分別記為與。相關(guān)系數(shù)對于隨機(jī)變量X與Y,如果D(X)>0,D(Y)>0,則稱為X與Y的相關(guān)系數(shù),記作(有時可簡記為)。 ||≤1,當(dāng)||=1時,稱X與Y完全相關(guān):完全相關(guān)而當(dāng)時,稱X與Y不相關(guān)。以下五個命題是等價的:①;②cov(X,Y)=0;③E(XY)=E(X)E(Y);④D(X+Y)=D(X)+D(Y);⑤D(X-Y)=D(X)+D(Y).協(xié)方差矩陣混合矩對于隨機(jī)變量X與Y,如果有存在,則稱之為X與Y的k+l階混合原點矩,記為;k+l階混合中心矩記為:(6)協(xié)方差的性質(zhì)cov(X,Y)=cov(Y,X);cov(aX,bY)=abcov(X,Y);cov(X1+X2,Y)=cov(X1,Y)+cov(X2,Y);cov(X,Y)=E(XY)-E(X)E(Y).(7)獨立和不相關(guān)若隨機(jī)變量X與Y相互獨立,則;反之不真。若(X,Y)~N(),則X與Y相互獨立的充要條件是X和Y不相關(guān)。第五章大數(shù)定律和中心極限定理(1)大數(shù)定律切比雪夫大數(shù)定律設(shè)隨機(jī)變量X1,X2,…相互獨立,均具有有限方差,且被同一常數(shù)C所界:D(Xi)<C(i=1,2,…),則對于任意的正數(shù)ε,有 特殊情形:若X1,X2,…具有相同的數(shù)學(xué)期望E(XI)=μ,則上式成為伯努利大數(shù)定律設(shè)μ是n次獨立試驗中事件A發(fā)生的次數(shù),p是事件A在每次試驗中發(fā)生的概率,則對于任意的正數(shù)ε,有 伯努利大數(shù)定律說明,當(dāng)試驗次數(shù)n很大時,事件A發(fā)生的頻率與概率有較大判別的可能性很小,即這就以嚴(yán)格的數(shù)學(xué)形式描述了頻率的穩(wěn)定性。辛欽大數(shù)定律設(shè)X1,X2,…,Xn,…是相互獨立同分布的隨機(jī)變量序列,且E(Xn)=μ,則對于任意的正數(shù)ε有(2)中心極限定理列維-林德伯格定理設(shè)隨機(jī)變量X1,X2,…相互獨立,服從同一分布,且具有相同的數(shù)學(xué)期望和方差:,則隨機(jī)變量的分布函數(shù)Fn(x)對任意的實數(shù)x,有此定理也稱為獨立同分布的中心極限定理。棣莫弗-拉普拉斯定理設(shè)隨機(jī)變量為具有參數(shù)n,p(0<p<1)的二項分布,則對于任意實數(shù)x,有(3)二項定理若當(dāng),則 超幾何分布的極限分布為二項分布。(4)泊松定理若當(dāng),則 其中k=0,1,2,…,n,…。二項分布的極限分布為泊松分布。第六章樣本及抽樣分布(1)數(shù)理統(tǒng)計的基本概念總體在數(shù)理統(tǒng)計中,常把被考察對象的某一個(或多個)指標(biāo)的全體稱為總體(或母體)。我們總是把總體看成一個具有分布的隨機(jī)變量(或隨機(jī)向量)。個體總體中的每一個單元稱為樣品(或個體)。樣本我們把從總體中抽取的部分樣品稱為樣本。樣本中所含的樣品數(shù)稱為樣本容量,一般用n表示。在一般情況下,總是把樣本看成是n個相互獨立的且與總體有相同分布的隨機(jī)變量,這樣的樣本稱為簡單隨機(jī)樣本。在泛指任一次抽取的結(jié)果時,表示n個隨機(jī)變量(樣本);在具體的一次抽取之后,表示n個具體的數(shù)值(樣本值)。我們稱之為樣本的兩重性。樣本函數(shù)和統(tǒng)計量設(shè)為總體的一個樣本,稱 ()為樣本函數(shù),其中為一個連續(xù)函數(shù)。如果中不包含任何未知參數(shù),則稱()為一個統(tǒng)計量。常見統(tǒng)計量及其性質(zhì)樣本均值 樣本方差 樣本標(biāo)準(zhǔn)差 樣本k階原點矩 樣本k階中心矩

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論