




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第第頁高二數(shù)學復數(shù)知識點總結(jié)(優(yōu)秀7篇)復數(shù)在高二數(shù)學教學中是一個難點,需要學生重點學習。這次帥氣的我為您整理了7篇《高二數(shù)學復數(shù)知識點總結(jié)》,可以幫助到您,就是小編我最大的樂趣哦。
高中數(shù)學復數(shù)知識點總結(jié)篇一
復數(shù)定義
我們把形如a+bi(a,b均為實數(shù))的數(shù)稱為復數(shù),其中a稱為實部,b稱為虛部,i稱為虛數(shù)單位。當虛部等于零時,這個復數(shù)可以視為實數(shù);當z的虛部不等于零時,實部等于零時,常稱z為純虛數(shù)。復數(shù)域是實數(shù)域的代數(shù)閉包,也即任何復系數(shù)多項式在復數(shù)域中總有根。
復數(shù)表達式
虛數(shù)是與任何事物沒有聯(lián)系的,是絕對的,所以符合的表達式為:
a=a+ia為實部,i為虛部
復數(shù)運算法則
加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;
減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;
乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;
除法法則:(a+bi)/(c+di)=[(ac+bd)/(c+d)]+[(bc-ad)/(c+d)]i.
例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最終結(jié)果還是0,也就在數(shù)字中沒有復數(shù)的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一個函數(shù)。
復數(shù)與幾何
①幾何形式
復數(shù)z=a+bi被復平面上的點z(a,b)唯一確定。這種形式使復數(shù)的問題可以借助圖形來研究。也可反過來用復數(shù)的理論解決一些幾何問題。
②向量形式
復數(shù)z=a+bi用一個以原點O(0,0)為起點,點Z(a,b)為終點的向量OZ表示。這種形式使復數(shù)四則運算得到恰當?shù)膸缀谓忉尅?/p>
③三角形式
復數(shù)z=a+bi化為三角形式
高中數(shù)學復數(shù)知識點總結(jié)篇二
方差定義
方差用來度量隨機變量和其數(shù)學期望(即均值)之間的偏離程度。統(tǒng)計中的方差(樣本方差)是各個數(shù)據(jù)分別與其平均數(shù)之差的平方的和的平均數(shù)。
方差性質(zhì)
1、設C為常數(shù),則D(C)=0(常數(shù)無波動);
2.D(CX)=C2D(X)(常數(shù)平方提?。?/p>
3、若X、Y相互自立,則前面兩項恰為D(X)和D(Y),第三項展開后為
當X、Y相互自立時,,故第三項為零。
自立前提的逐項求和,可推廣到有限項。
方差的應用
計算下列一組數(shù)據(jù)的極差、方差及標準差(精確到0.01)。
50,55,96,98,65,100,70,90,85,100.
答:極差為100-50=50.
復數(shù)的知識點總結(jié)篇三
復數(shù)的概念:
形如a+bi(a,b∈R)的數(shù)叫復數(shù),其中i叫做虛數(shù)單位。全體復數(shù)所成的集合叫做復數(shù)集,用字母C表示。
復數(shù)的表示:
復數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數(shù)的代數(shù)形式,其中a叫復數(shù)的實部,b叫復數(shù)的虛部。
復數(shù)的幾何意義:
(1)復平面、實軸、虛軸:
點Z的橫坐標是a,縱坐標是b,復數(shù)z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復數(shù)的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)
(2)復數(shù)的幾何意義:復數(shù)集C和復平面內(nèi)所有的點所成的集合是一一對應關(guān)系,即
這是因為,每一個復數(shù)有復平面內(nèi)惟一的一個點和它對應;反過來,復平面內(nèi)的每一個點,有惟一的一個復數(shù)和它對應。
這就是復數(shù)的一種幾何意義,也就是復數(shù)的另一種表示方法,即幾何表示方法。
復數(shù)的模:
復數(shù)z=a+bi(a、b∈R)在復平面上對應的點Z(a,b)到原點的距離叫復數(shù)的模,記為|Z|,即|Z|=
虛數(shù)單位i:
(1)它的平方等于-1,即i2=-1;
(2)實數(shù)可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立
(3)i與-1的關(guān)系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
復數(shù)模的性質(zhì):
復數(shù)與實數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:
對于復數(shù)a+bi(a、b∈R),當且僅當b=0時,復數(shù)a+bi(a、b∈R)是實數(shù)a;當b≠0時,復數(shù)z=a+bi叫做虛數(shù);當a=0且b≠0時,z=bi叫做純虛數(shù);當且僅當a=b=0時,z就是實數(shù)0。
兩個復數(shù)相等的定義:
如果兩個復數(shù)的實部和虛部分別相等,那么我們就說這兩個復數(shù)相等,即:如果a,b,c,d∈R,那么a+bi=c+di
a=c,b=d。特殊地,a,b∈R時,a+bi=0
a=0,b=0.
復數(shù)相等的充要條件,提供了將復數(shù)問題化歸為實數(shù)問題解決的途徑。
復數(shù)相等特別提醒:
一般地,兩個復數(shù)只能說相等或不相等,而不能比較大小。如果兩個復數(shù)都是實數(shù),就可以比較大小,也只有當兩個復數(shù)全是實數(shù)時才能比較大小。
解復數(shù)相等問題的方法步驟:
(1)把給的復數(shù)化成復數(shù)的標準形式;
(2)根據(jù)復數(shù)相等的充要條件解之。
學好初中數(shù)學的方法
1、重視課本的'內(nèi)容
書本知識是初中生學習數(shù)學最根本的一部分了,初中生一定要重視書本上的知識點,不管是概念還是公式以及書本上的練習題,初中生一定要熟練掌握。初中生要想更熟練的掌握書本的知識點,可以將數(shù)學課本的每一章節(jié),從頭到尾的仔細閱讀,這樣可以增加自己對容易忽略的知識點的了解。有很多學生常常會忽略課本的習題,雖然課本的習題很簡單,但是考察的知識點卻特別有針對性,所以一定要引起學生的重視。
2、通過聯(lián)系對比進行辨析
在數(shù)學知識中有不少是由同一基本概念和方法引申出來的種屬及其他相關(guān)知識,或看來相同,實質(zhì)不同的知識,學習這類知識的主要方法,是用找聯(lián)系、抓對比進行辨析。如直線、射線、線段這些概念,它們既有聯(lián)系又有區(qū)別。
3、多做練習題
要想學好初中數(shù)學,必須多做練習,我們所說的“多做練習”,不是搞“題海戰(zhàn)術(shù)”。只做不思,不能起到鞏固概念,拓寬思路的作用,而且有“副作用”:把已學過的知識攪得一塌糊涂,理不出頭緒,浪費時間又收獲不大,我們所說的“多做練習”,是要大家在做了一道新穎的題目之后,多想一想:它究竟用到了哪些知識,是否可以多解,其結(jié)論是否還可以加強、推廣等等。
4、課后總結(jié)和反思
在進行單元小結(jié)或?qū)W期總結(jié)時,要做到以下幾點:一看:看書、看筆記、看習題,通過看,回憶、熟悉所學內(nèi)容;二列:列出相關(guān)的知識點,標出重點、難點,列出各知識點之間的關(guān)系,這相當于寫出總結(jié)要點;三做:在此基礎上有目的、有重點、有選擇地解一些各種檔次、類型的習題,通過解題再反饋,發(fā)現(xiàn)問題、解決問題。
數(shù)學加法心算技巧
1、分裂再湊整數(shù)加法;
比如;8+5=13,先把“5”分裂成“2”和“3”;那么就是8+2+3=10;
2、比如;77+8=85,先把“8”分裂成“3”和“5”;那么就是77+3+5=85;
3、變整數(shù)再減去
比如,26+18=44,把“18”變成“20-2”,那么就是26+20-2=44;
4、比如;387+983=1370,把“983”變成“1000-17”,那么就是387+1000-17=1370;
5、錯位數(shù)相加
比如,個位加十位得數(shù)是個位的;
51+15=66;這樣算:5+1得6;1+5得6;兩6合拼
72+27=99;這樣算:7+2得9;2+7得9;兩9合拼
63+36=99;這樣算:6+3得9;3+6得9;兩9合拼
52+25=77;這樣算:5+2得7;2+5得7;兩7合拼
6、比如,個位加十位得數(shù)是十位的;
78+87=165;這樣算:7+8=15,再把“15”兩個數(shù)字“1”和“5”相加得6,把這個“6”放在“15”的中間,得出“165”;
67+76=143,這樣算:6+7=13,再把“13”兩個數(shù)字“1”和“3”相加得4,把這個“4”放在“13”的中間,得出“143”;
高中數(shù)學復數(shù)知識點總結(jié)篇四
復數(shù)的概念:
形如a+bi(a,b∈R)的。數(shù)叫復數(shù),其中i叫做虛數(shù)單位。全體復數(shù)所成的集合叫做復數(shù)集,用字母C表示。
復數(shù)的表示:
復數(shù)通常用字母z表示,即z=a+bi(a,b∈R),這一表示形式叫做復數(shù)的代數(shù)形式,其中a叫復數(shù)的實部,b叫復數(shù)的虛部。
復數(shù)的幾何意義:
(1)復平面、實軸、虛軸:
點Z的橫坐標是a,縱坐標是b,復數(shù)z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角坐標系來表示復數(shù)的平面叫做復平面,x軸叫做實軸,y軸叫做虛軸。顯然,實軸上的點都表示實數(shù),除原點外,虛軸上的點都表示純虛數(shù)
(2)復數(shù)的幾何意義:復數(shù)集C和復平面內(nèi)所有的點所成的集合是一一對應關(guān)系,即
這是因為,每一個復數(shù)有復平面內(nèi)惟一的一個點和它對應;反過來,復平面內(nèi)的每一個點,有惟一的一個復數(shù)和它對應。
這就是復數(shù)的一種幾何意義,也就是復數(shù)的另一種表示方法,即幾何表示方法。
復數(shù)的模:
復數(shù)z=a+bi(a、b∈R)在復平面上對應的點Z(a,b)到原點的距離叫復數(shù)的模,記為|Z|,即|Z|=
虛數(shù)單位i:
(1)它的平方等于-1,即i2=-1;
(2)實數(shù)可以與它進行四則運算,進行四則運算時,原有加、乘運算律仍然成立
(3)i與-1的關(guān)系:i就是-1的一個平方根,即方程x2=-1的一個根,方程x2=-1的另一個根是-i。
(4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。
復數(shù)模的性質(zhì):
復數(shù)與實數(shù)、虛數(shù)、純虛數(shù)及0的關(guān)系:
對于復數(shù)a+bi(a、b∈R),當且僅當b=0時,復數(shù)a+bi(a、b∈R)是實數(shù)a;當b≠0時,復數(shù)z=a+bi叫做虛數(shù);當a=0且b≠0時,z=bi叫做純虛數(shù);當且僅當a=b=0時,z就是實數(shù)0。
兩個復數(shù)相等的定義:
如果兩個復數(shù)的實部和虛部分別相等,那么我們就說這兩個復數(shù)相等,即:如果a,b,c,d∈R,那么a+bi=c+di
a=c,b=d。特殊地,a,b∈R時,a+bi=0
a=0,b=0.
復數(shù)相等的充要條件,提供了將復數(shù)問題化歸為實數(shù)問題解決的途徑。
復數(shù)相等特別提醒:
一般地,兩個復數(shù)只能說相等或不相等,而不能比較大小。如果兩個復數(shù)都是實數(shù),就可以比較大小,也只有當兩個復數(shù)全是實數(shù)時才能比較大小。
解復數(shù)相等問題的方法步驟:
(1)把給的復數(shù)化成復數(shù)的標準形式;
(2)根據(jù)復數(shù)相等的充要條件解之。
數(shù)學加法心算技巧
1、分裂再湊整數(shù)加法;
比如;8+5=13,先把“5”分裂成“2”和“3”;那么就是8+2+3=10;
2、比如;77+8=85,先把“8”分裂成“3”和“5”;那么就是77+3+5=85;
3、變整數(shù)再減去
比如,26+18=44,把“18”變成“20-2”,那么就是26+20-2=44;
4、比如;387+983=1370,把“983”變成“1000-17”,那么就是387+1000-17=1370;
5、錯位數(shù)相加
比如,個位加十位得數(shù)是個位的;
51+15=66;這樣算:5+1得6;1+5得6;兩6合拼
72+27=99;這樣算:7+2得9;2+7得9;兩9合拼
63+36=99;這樣算:6+3得9;3+6得9;兩9合拼
52+25=77;這樣算:5+2得7;2+5得7;兩7合拼
6、比如,個位加十位得數(shù)是十位的;
78+87=165;這樣算:7+8=15,再把“15”兩個數(shù)字“1”和“5”相加得6,把這個“6”放在“15”的中間,得出“165”;
67+76=143,這樣算:6+7=13,再把“13”兩個數(shù)字“1”和“3”相加得4,把這個“4”放在“13”的中間,得出“143”;
復數(shù)的知識點總結(jié)篇五
定義
數(shù)集拓展到實數(shù)范圍內(nèi),仍有些運算無法進行。比如判別式小于0的一元二次方程仍無解,因此將數(shù)集再次擴充,達到復數(shù)范圍。形如z=a+bi的數(shù)稱為復數(shù)(complexnumber),其中規(guī)定i為虛數(shù)單位,且i^2=i*i=-1(a,b是任意實數(shù))我們將復數(shù)z=a+bi中的實數(shù)a稱為復數(shù)z的實部(realpart)記作Rez=a實數(shù)b稱為復數(shù)z的虛部(imaginarypart)記作Imz=b.已知:當b=0時,z=a,這時復數(shù)成為實數(shù)當a=0且b0時,z=bi,我們就將其稱為純虛數(shù)。
運算法則
加法法則
復數(shù)的加法法則:設z1=a+bi,z2=c+di是任意兩個復數(shù)。兩者和的實部是原來兩個復數(shù)實部的和,它的虛部是原來兩個虛部的和。兩個復數(shù)的和依然是復數(shù)。
即(a+bi)+(c+di)=(a+c)+(b+d)i.
乘法法則
復數(shù)的乘法法則:把兩個復數(shù)相乘,類似兩個多項式相乘,結(jié)果中i^2=1,把實部與虛部分別合并。兩個復數(shù)的積仍然是一個復數(shù)。
即(a+bi)(c+di)=(ac-bd)+(bc+ad)i.
除法法則
復數(shù)除法定義:滿足(c+di)(x+yi)=(a+bi)的復數(shù)x+yi(x,yR)叫復數(shù)a+bi除以復數(shù)c+di的商運算方法:將分子和分母同時乘以分母的共軛復數(shù),再用乘法法則運算,
即(a+bi)/(c+di)
=[(a+bi)(c-di)]/[(c+di)(c-di)]
=[(ac+bd)+(bc-ad)i]/(c^2+d^2)。
開方法則
若z^n=r(cos+isin),則
z=nr[cos(2k)/n+isin(2k)/n](k=0,1,2,3n-1)
高二數(shù)學學習方法篇六
課內(nèi)重視聽講,課后及時復習。
新知識的接受,數(shù)學能力的培養(yǎng)主要在課堂上進行,所以要特點重視課內(nèi)的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課后要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,應盡量回憶而不采用不清楚立即翻書之舉。認真自立完成作業(yè),勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結(jié),把知識的點、線、面結(jié)合起來交織成知識網(wǎng)絡,納入自己的知識體系。
適當多做題,養(yǎng)成良好的解題習慣。
要想學好數(shù)學,多做題是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養(yǎng)成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態(tài),在考試中能運用自如。實踐證明:越到關(guān)鍵時候,你所表現(xiàn)的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習慣是非常重要的。
調(diào)整心態(tài),正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調(diào)劑,認真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發(fā)揮。
高二數(shù)學復數(shù)練習篇七
1、如果復數(shù)a+bi(a,bR)在復平面內(nèi)的對應點在第二象限,則()
A.a0,b0
B.a0,b0
C.a0,b0
D.a0,b0
[答案]D
[解析]復數(shù)z=a+bi在復平面內(nèi)的對應點坐標為(a,b),該點在第二象限,需a0且b0,故應選D.
2、(2023北京文,2)在復平面內(nèi),復數(shù)6+5i,-2+3i對應的點分別為A,B.若C為線段AB的中點,則點C對應的復數(shù)是()
A.4+8i
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五暑期工勞務派遣與就業(yè)環(huán)境優(yōu)化合同
- 二零二五年度物流公司貨車司機服務質(zhì)量考核與獎勵協(xié)議
- 2025年度網(wǎng)絡安全防護等級評定安全協(xié)議書
- 2025年度汽車零部件貨物運輸安全與質(zhì)量協(xié)議
- 二零二五年度環(huán)保產(chǎn)業(yè)技術(shù)人才招聘與綠色創(chuàng)新協(xié)議
- 2025年度環(huán)保型清潔公司員工聘用合同書
- 二零二五年度水利設施監(jiān)控維保及災害預警服務合同
- 二零二五年度海鮮水產(chǎn)店轉(zhuǎn)讓與經(jīng)營協(xié)議
- 二零二五年度倆人共同創(chuàng)業(yè)經(jīng)營咖啡廳合伙協(xié)議
- 二零二五年度農(nóng)村土地租賃合同模板(現(xiàn)代農(nóng)業(yè)物流園區(qū))
- 醫(yī)學專家談靈芝孢子粉課件
- 開心麻花《白蛇前傳》劇本
- 全部編版三年級語文下冊生字讀音、音序、偏旁及組詞
- 六年級下冊英語全冊教案(冀教版)
- 血小板血漿(PRP)課件
- 腹部開放性損傷急救
- 二輪 河流專題(精心)
- 球墨鑄鐵管安裝規(guī)范及圖示課件
- ERCP講義教學課件
- 《人類行為與社會環(huán)境》課件
- 兒科病毒性腦炎課件
評論
0/150
提交評論