版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
PAGE2PAGE1PAGE1二次函數(shù)與圖形綜合二次函數(shù)與圖形綜合知識互聯(lián)網(wǎng)知識互聯(lián)網(wǎng)題型一:坐標(biāo)系中(函數(shù)圖象上)動點產(chǎn)生三角形問題題型一:坐標(biāo)系中(函數(shù)圖象上)動點產(chǎn)生三角形問題思路導(dǎo)航思路導(dǎo)航坐標(biāo)系中(函數(shù)圖象上)動點產(chǎn)生三角形的問題我們主要講解3類:①因動點產(chǎn)生的等腰三角形問題②因動點產(chǎn)生的直角三角形問題③因動點產(chǎn)生的相似三角形問題.一、方法與技巧:已知線段SKIPIF1<0和直線SKIPIF1<0,在直線SKIPIF1<0上找點SKIPIF1<0,使SKIPIF1<0為等腰三角形.幾何法:①分別以點SKIPIF1<0、SKIPIF1<0為圓心,SKIPIF1<0為半徑作圓,找點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(檢驗)②作線段SKIPIF1<0的垂直平分線SKIPIF1<0,找點SKIPIF1<0.(檢驗)代數(shù)法:設(shè)點SKIPIF1<0的坐標(biāo)為SKIPIF1<0,求出SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的長度,分類討論:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0.求出點SKIPIF1<0SKIPIF1<0.(檢驗)二、方法與技巧:已知線段SKIPIF1<0和直線SKIPIF1<0,在直線SKIPIF1<0上找點SKIPIF1<0,使SKIPIF1<0為直角三角形.幾何法:①分別過點SKIPIF1<0、SKIPIF1<0作線段SKIPIF1<0的垂線,找點SKIPIF1<0,SKIPIF1<0.(檢驗)②以線段SKIPIF1<0為直徑作圓,利用直徑所對的圓周角為SKIPIF1<0,找點SKIPIF1<0,SKIPIF1<0.(檢驗)代數(shù)法:設(shè)點SKIPIF1<0的坐標(biāo)為SKIPIF1<0,求出SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的長度,分類討論:①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0.求出點SKIPIF1<0SKIPIF1<0.(檢驗)三、方法與技巧:以點SKIPIF1<0、SKIPIF1<0、SKIPIF1<0為頂點的三角形和SKIPIF1<0相似.根據(jù)“兩組角對應(yīng)相等,兩三角形相似.”進(jìn)行分類討論:①SKIPIF1<0,②SKIPIF1<0,③SKIPIF1<0,④SKIPIF1<0,⑤SKIPIF1<0,⑥SKIPIF1<0.(檢驗)典題精練典題精練已知二次函數(shù)SKIPIF1<0的圖象與SKIPIF1<0軸的一個交點為SKIPIF1<0,與SKIPIF1<0軸交于點SKIPIF1<0.=1\*GB2⑴求此二次函數(shù)關(guān)系式和點SKIPIF1<0的坐標(biāo);=2\*GB2⑵在SKIPIF1<0軸的正半軸上是否存在點SKIPIF1<0.使得SKIPIF1<0是以SKIPIF1<0為底邊的等腰三角形?若存在,求出點SKIPIF1<0的坐標(biāo);若不存在,請說明理由. 【解析】⑴把點SKIPIF1<0代入二次函數(shù)有:SKIPIF1<0得:SKIPIF1<0所以二次函數(shù)的關(guān)系式為:SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0∴點SKIPIF1<0的坐標(biāo)為SKIPIF1<0.⑵如圖:作SKIPIF1<0的垂直平分線交SKIPIF1<0軸于點SKIPIF1<0,連接SKIPIF1<0,則:SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0,在直角SKIPIF1<0中,SKIPIF1<0即:SKIPIF1<0解得:SKIPIF1<0∴SKIPIF1<0所以點SKIPIF1<0的坐標(biāo)為:SKIPIF1<0可以把“SKIPIF1<0是以SKIPIF1<0為底邊的等腰三角形”拓展為“SKIPIF1<0是等腰三角形”.在平面直角坐標(biāo)系內(nèi),反比例函數(shù)和二次函數(shù)SKIPIF1<0的圖象交于點和點SKIPIF1<0.⑴當(dāng)時,求反比例函數(shù)的解析式;⑵要使反比例函數(shù)和二次函數(shù)都是隨著的增大而增大,求應(yīng)滿足的條件以及的取值范圍;⑶設(shè)二次函數(shù)的圖象的頂點為,當(dāng)是以為斜邊的直角三角形時,求的值.【解析】 ⑴當(dāng)時,,∵在反比例函數(shù)圖象上,∴設(shè)反比例函數(shù)的解析式為:SKIPIF1<0,代入得:SKIPIF1<0,解得:,∴反比例函數(shù)的解析式為:,⑵∵要使反比例函數(shù)和二次函數(shù)都是SKIPIF1<0隨著的增大而增大,∴SKIPIF1<0,∵二次函數(shù),的對稱軸為:直線,要使二次函數(shù)滿足上述條件,在的情況,必須在對稱軸左邊,即時,才能使得隨著的增大而增大,∴綜上所述,SKIPIF1<0且;⑶由⑵可得:,∵是以為斜邊的直角三角形,點與點關(guān)于原點對稱,(如圖是其中的一種情況)∴原點平分,∴,作,,∴,∵,∴,解得:.如圖,在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,沿直線SKIPIF1<0折疊矩形SKIPIF1<0的一邊SKIPIF1<0,使點B落在SKIPIF1<0邊上的點E處.分別以SKIPIF1<0,SKIPIF1<0所在的直線為x軸,y軸建立平面直角坐標(biāo)系,拋物線SKIPIF1<0經(jīng)過O,D,C三點.⑴求SKIPIF1<0的長及拋物線的解析式;⑵一動點P從點E出發(fā),沿SKIPIF1<0以每秒2個單位長的速度向點C運動,同時動點Q從點C出發(fā),沿SKIPIF1<0以每秒1個單位長的速度向點O運動,當(dāng)點P運動到點C時,兩點同時停止運動.設(shè)運動時間為t秒,當(dāng)t為何值時,以P、Q、C為頂點的三角形與SKIPIF1<0相似?【解析】 ⑴∵四邊形SKIPIF1<0為矩形,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.由題意得,SKIPIF1<0.∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.由勾股定理易得SKIPIF1<0.∴SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,由勾股定理,得SKIPIF1<0.解之得,SKIPIF1<0,∴SKIPIF1<0.∵拋物線SKIPIF1<0過點SKIPIF1<0,∴SKIPIF1<0.∵拋物線SKIPIF1<0過點SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.解之得SKIPIF1<0.∴拋物線的解析式為:SKIPIF1<0.⑵∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.由⑴可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.而SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.∴當(dāng)SKIPIF1<0或SKIPIF1<0時,以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為頂點的三角形與SKIPIF1<0相似.題型二:坐標(biāo)系中(函數(shù)圖象上)動點產(chǎn)生四邊形問題題型二:坐標(biāo)系中(函數(shù)圖象上)動點產(chǎn)生四邊形問題思路導(dǎo)航思路導(dǎo)航坐標(biāo)系中(函數(shù)圖象上)動點產(chǎn)生四邊形問題:主要講解兩類問題:⑴因動點產(chǎn)生的平行四邊形問題⑵因動點產(chǎn)生的梯形問題.⑴因動點產(chǎn)生的平行四邊形問題的方法與技巧:已知以點SKIPIF1<0、點SKIPIF1<0為頂點的四邊形為平行四邊形,尋找平行四邊形的另外兩個頂點.①SKIPIF1<0為邊:平移型,利用一組對邊平行且相等的四邊形為平行四邊形.②SKIPIF1<0為對角線:旋轉(zhuǎn)型,利用對角線互相平分的四邊形為平行四邊形.⑵因動點產(chǎn)生的梯形問題的方法與技巧:如圖,已知SKIPIF1<0和直線SKIPIF1<0,在直線SKIPIF1<0上找點SKIPIF1<0,使以點SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0為頂點的四邊形為梯形.①分別過點SKIPIF1<0、SKIPIF1<0、SKIPIF1<0作SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的平行線與直線SKIPIF1<0相交.②檢驗以點SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0為頂點的四邊形是否為平行四邊形.
典題精練典題精練在平面直角坐標(biāo)系中,以點SKIPIF1<0為圓心、半徑為SKIPIF1<0的圓與SKIPIF1<0軸相交于點SKIPIF1<0、SKIPIF1<0(點SKIPIF1<0在點SKIPIF1<0的左邊),與SKIPIF1<0軸相交于點SKIPIF1<0、SKIPIF1<0(點SKIPIF1<0在點SKIPIF1<0的下方).⑴求以直線SKIPIF1<0為對稱軸,且經(jīng)過點SKIPIF1<0、SKIPIF1<0的拋物線的解析式;⑵若SKIPIF1<0為這條拋物線對稱軸上的點,則在拋物線上是否存在這樣的點SKIPIF1<0,使得以點SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0為頂點的四邊形是平行四邊形.若存在,求出點SKIPIF1<0坐標(biāo);若不存在,說明理由.⑴如圖,∵圓以點SKIPIF1<0為圓心,半徑為5,∴此圓與SKIPIF1<0軸交于點SKIPIF1<0,SKIPIF1<0.連接OD在SKIPIF1<0中,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.∴點SKIPIF1<0的坐標(biāo)為SKIPIF1<0.設(shè)拋物線的解析式為SKIPIF1<0,∵拋物線經(jīng)過點SKIPIF1<0,SKIPIF1<0,且對稱軸為SKIPIF1<0,∴SKIPIF1<0解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.∴拋物線的解析式為SKIPIF1<0.⑵存在符合條件的點F,使得以點SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0為頂點的四邊形是平行四邊形.情況1:當(dāng)SKIPIF1<0為平行四邊形的一邊時,∵SKIPIF1<0,∴SKIPIF1<0.設(shè)點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,將點SKIPIF1<0、SKIPIF1<0分別代入拋物線的解析式,
得SKIPIF1<0,SKIPIF1<0.情況2:當(dāng)SKIPIF1<0為平行四邊形的對角線時,SKIPIF1<0,又∵點SKIPIF1<0在拋物線上,∴點SKIPIF1<0必為拋物線的頂點.∴SKIPIF1<0.綜上所述SKIPIF1<0,SKIPIF1<0,SKIPIF1<0使得以點SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0為頂點的四邊形是平行四邊形.拋物線SKIPIF1<0經(jīng)過直線SKIPIF1<0與坐標(biāo)軸的兩個交點SKIPIF1<0,拋物線與SKIPIF1<0軸的另一個交點為SKIPIF1<0,拋物線的頂點為SKIPIF1<0.⑴求此拋物線的解析式;⑵試判斷SKIPIF1<0的形狀,并證明你的結(jié)論;⑶在坐標(biāo)軸上是否存在點SKIPIF1<0使得以點SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0為頂點的四邊形是梯形.若存在,求出點SKIPIF1<0的坐標(biāo);若不存在,說明理由.⑴∵直線SKIPIF1<0與坐標(biāo)軸的兩個交點坐標(biāo)分別為SKIPIF1<0,又拋物線SKIPIF1<0經(jīng)過這兩個點,則可得SKIPIF1<0,解得SKIPIF1<0,∴此拋物線的解析式為SKIPIF1<0.⑵由⑴可知:SKIPIF1<0點坐標(biāo)為SKIPIF1<0,頂點SKIPIF1<0的坐標(biāo)為SKIPIF1<0,過SKIPIF1<0點作SKIPIF1<0軸于SKIPIF1<0,可知SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0是直角三角形.⑶分以下三種情況討論:①若SKIPIF1<0為底,則SKIPIF1<0與SKIPIF1<0軸交于SKIPIF1<0點,由SKIPIF1<0易知,直線SKIPIF1<0的解析式為SKIPIF1<0,∴直線SKIPIF1<0的解析式為SKIPIF1<0,∴SKIPIF1<0.②若SKIPIF1<0為底,則SKIPIF1<0與SKIPIF1<0軸交于SKIPIF1<0點,由SKIPIF1<0易知,直線SKIPIF1<0的解析式為SKIPIF1<0,∴直線SKIPIF1<0的解析式為SKIPIF1<0,∴SKIPIF1<0.③若SKIPIF1<0為底,則SKIPIF1<0與SKIPIF1<0軸、SKIPIF1<0軸分別交于SKIPIF1<0,已知直線SKIPIF1<0的解析式為SKIPIF1<0,∴直線SKIPIF1<0的解析式為SKIPIF1<0,∴SKIPIF1<0.綜上所述,滿足以SKIPIF1<0為頂點的四邊形是梯形的SKIPIF1<0點坐標(biāo)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.
如圖,已知拋物線SKIPIF1<0:SKIPIF1<0的頂點為SKIPIF1<0,與SKIPIF1<0軸相交于SKIPIF1<0兩點(點SKIPIF1<0在點SKIPIF1<0的左邊),點SKIPIF1<0的橫坐標(biāo)是SKIPIF1<0.yxAOyxAOBPM圖1C1C2C3圖⑴yxAOPPN圖2C1C4QEF圖⑵⑴求SKIPIF1<0點坐標(biāo)及SKIPIF1<0的值;⑵如圖⑴,拋物線SKIPIF1<0與拋物線SKIPIF1<0關(guān)于SKIPIF1<0軸對稱,將拋物線SKIPIF1<0向右平移,平移后的拋物線記為SKIPIF1<0,SKIPIF1<0的頂點為SKIPIF1<0,當(dāng)點SKIPIF1<0關(guān)于點SKIPIF1<0成中心對稱時,求SKIPIF1<0的解析式;⑶如圖⑵,點SKIPIF1<0是SKIPIF1<0軸正半軸上一點,將拋物線SKIPIF1<0繞點SKIPIF1<0旋轉(zhuǎn)SKIPIF1<0后得到拋物線SKIPIF1<0.拋物線SKIPIF1<0的頂點為SKIPIF1<0,與SKIPIF1<0軸相交于SKIPIF1<0兩點(點SKIPIF1<0在點SKIPIF1<0的左邊),當(dāng)以點SKIPIF1<0為頂點的三角形是直角三角形時,求點SKIPIF1<0的坐標(biāo).yxAOBPM圖⑴C1C2C3HG⑴由拋物線SKIPIF1<0:SKIPIF1<0得頂點SKIPIF1<0的坐標(biāo)為SKIPIF1<0yxAOBPM圖⑴C1C2C3HG∵點SKIPIF1<0在拋物線SKIPIF1<0上,∴SKIPIF1<0,解得SKIPIF1<0.⑵連接SKIPIF1<0,作SKIPIF1<0軸于SKIPIF1<0,作SKIPIF1<0軸于SKIPIF1<0∵點SKIPIF1<0關(guān)于點SKIPIF1<0成中心對稱,∴SKIPIF1<0過點SKIPIF1<0,且SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0∴頂點SKIPIF1<0的坐標(biāo)為SKIPIF1<0yxAOBPN圖⑵QEFHGK拋物線SKIPIF1<0關(guān)于SKIPIF1<0軸對稱得到SKIPIF1<0,再平移得到SKIPIF1<0yxAOBPN圖⑵QEFHGK∴拋物線SKIPIF1<0的解析式為SKIPIF1<0⑶∵拋物線SKIPIF1<0由SKIPIF1<0繞著SKIPIF1<0軸上的點SKIPIF1<0旋轉(zhuǎn)SKIPIF1<0得到∴頂點SKIPIF1<0關(guān)于點SKIPIF1<0成中心對稱由⑵得點SKIPIF1<0的縱坐標(biāo)為SKIPIF1<0,設(shè)點SKIPIF1<0坐標(biāo)為SKIPIF1<0作SKIPIF1<0軸于SKIPIF1<0,作SKIPIF1<0軸于SKIPIF1<0,作SKIPIF1<0于SKIPIF1<0∵旋轉(zhuǎn)中心SKIPIF1<0在SKIPIF1<0軸上,∴SKIPIF1<0,∴SKIPIF1<0,點SKIPIF1<0坐標(biāo)為SKIPIF1<0,SKIPIF1<0坐標(biāo)為SKIPIF1<0,SKIPIF1<0坐標(biāo)為SKIPIF1<0,根據(jù)勾股定理得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,①當(dāng)SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0點坐標(biāo)為SKIPIF1<0②當(dāng)SKIPIF1<0時,SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0點坐標(biāo)為SKIPIF1<0③∵SKIPIF1<0,∴SKIPIF1<0綜上,當(dāng)SKIPIF1<0點坐標(biāo)為SKIPIF1<0或SKIPIF1<0時,以點SKIPIF1<0為頂點的三角形是直角三角形.復(fù)習(xí)鞏固復(fù)習(xí)鞏固題型一坐標(biāo)系中(函數(shù)圖象上)動點產(chǎn)生三角形問題鞏固練習(xí)如圖,拋物線SKIPIF1<0與SKIPIF1<0軸相交于SKIPIF1<0、SKIPIF1<0兩點(點SKIPIF1<0在點SKIPIF1<0右側(cè)),過點SKIPIF1<0的直線交拋物線于另一點SKIPIF1<0,點SKIPIF1<0的坐標(biāo)為SKIPIF1<0.⑴求SKIPIF1<0的值及直線SKIPIF1<0的函數(shù)關(guān)系式;⑵SKIPIF1<0是線段SKIPIF1<0上一動點,過點SKIPIF1<0作SKIPIF1<0軸的平行線,交拋物線于點SKIPIF1<0,交SKIPIF1<0軸于點SKIPIF1<0.①求線段SKIPIF1<0長度的最大值;②在拋物線上是否存在這樣的點SKIPIF1<0,使得SKIPIF1<0與SKIPIF1<0相似?如果存在,請直接寫出所有滿足條件的點SKIPIF1<0的坐標(biāo)(不必寫解答過程);如果不存在,請說明理由.⑴由題意得SKIPIF1<0,∴SKIPIF1<0∴拋物線的函數(shù)解析式為SKIPIF1<0,與SKIPIF1<0軸交于SKIPIF1<0、SKIPIF1<0設(shè)直線SKIPIF1<0的解析式為SKIPIF1<0,則有SKIPIF1<0,解得SKIPIF1<0,∴直線SKIPIF1<0的解析式為SKIPIF1<0⑵①設(shè)SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0SKIPIF1<0∴當(dāng)SKIPIF1<0時,SKIPIF1<0的最大值為SKIPIF1<0.②SKIPIF1<0;SKIPIF1<0提示:SKIPIF1<0通過觀察容易得到,SKIPIF1<0需要計算過SKIPIF1<0點且與SKIPIF1<0垂直的直線與拋物線的交點,比較復(fù)雜;亦或過SKIPIF1<0作SKIPIF1<0的垂線,垂足為SKIPIF1<0,則SKIPIF1<0,得到SKIPIF1<0,設(shè)SKIPIF1<0點的橫坐標(biāo)為SKIPIF1<0,通過點坐標(biāo)與線段的轉(zhuǎn)化,利用比例關(guān)系求出SKIPIF1<0,進(jìn)一步求出SKIPIF1<0點坐標(biāo).題型二坐標(biāo)系中(函數(shù)圖象上)動點產(chǎn)生四邊形問題鞏固練習(xí)已知:如圖所示,關(guān)于SKIPIF1<0的拋物線SKIPIF1<0與SKIPIF1<0軸交于點SKIPIF1<0、點SKIPIF1<0,與SKIPIF1<0軸交于點SKIPIF1<0.⑴求出此拋物線的解析式,并寫出頂點坐標(biāo);⑵在拋物線上有一點SKIPIF1<0,使四邊形SKIPIF1<0為等腰梯形,寫出點SKIPIF1<0的坐標(biāo),并求出直線SKIPIF1<0的解析式;⑶在⑵的條件下直線SKIPIF1<0交拋物線的對稱軸于點SKIPIF1<0,拋物線上有一動點SKIPIF1<0,SKIPIF1<0軸上有一動點SKIPIF1<0,是否存在以SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0為頂點的平行四邊形?如果存在,請直接寫出點SKIPIF1<0的坐標(biāo);如果不存在,請說明理由.⑴根據(jù)題意,得SKIPIF1<0,解得SKIPIF1<0∴拋物線的解析式為SKIPIF1<0,頂點坐標(biāo)是SKIPIF1<0.⑵SKIPIF1<0設(shè)直線SKIPIF1<0的解析式為SKIPIF1<0∵直線經(jīng)過點SKIPIF1<0,點SKIPIF1<0∴SKIPIF1<0,解得SKIPIF1<0,∴SKIPIF1<0.⑶存在.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.在平面直角坐標(biāo)系中,以點SKIPIF1<0為圓心、半徑為SKIPIF1<0的圓與SKIPIF1<0軸相交于點SKIPIF1<0、SKIPIF1<0(點SKIPIF1<0在點SKIPIF1<0的左邊),與SKIPIF1<0軸相交于點SKIPIF1<0、SKIPIF1<0(點SKIPIF1<0在點SKIPIF1<0的下方).⑴求以直線SKIPIF1<0為對稱軸,且經(jīng)過點SKIPIF1<0、SKIPIF1<0的拋物線的解析式;⑵若點SKIPIF1<0是該拋物線對稱軸上的一個動點,求SKIPIF1<0的取值范圍;⑶若SKIPIF1<0為這個拋物線對稱軸上的點,則在拋物線上是否存在這樣的點SKIPIF1<0,使得以點SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0為頂點的四邊形是平行四邊形.若存在,求出點SKIPIF1<0的坐標(biāo);若不存在,說明理由.⑴由SKIPIF1<0的圓心為SKIPIF1<0,半徑為SKIPIF1<0,及各點的位置可知SKIPIF1<0,∵拋物線的對稱軸是SKIPIF1<0,且經(jīng)過點SKIPIF1<0,∴該拋物線一定經(jīng)過點SKIPIF1<0,∴設(shè)拋物線解析式為SKIPIF1<0,代入SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,∴拋物線解析式為SKIPIF1<0.⑵由SKIPIF1<0兩點關(guān)于對稱軸對稱,則連結(jié)SKIPIF1<0與對稱軸交于一點SKIPIF1<0,此時SKIPIF1<0最小,又知SKIPIF1<0,∴SKIPIF1<0的取值范圍是SKIPIF1<0.⑶①若SKIPIF1<0,則SKIPIF1<0點橫坐標(biāo)為SKIPIF1<0或SKIPIF1<0,這兩點關(guān)于對稱軸對稱,∴SKIPIF1<0,∴SKIPIF1<0點的坐標(biāo)為SKIPIF1<0.②若SKIPIF1<0互相平分,則SKIPIF1<0點在對稱軸上,∴SKIPIF1<0點坐標(biāo)為SKIPIF1<0.∴存在點SKIPIF1<0,坐標(biāo)為SKIPIF1<0.如圖,在平面直角坐標(biāo)系SKIPIF1<0中,拋物線SKIPIF1<0與SKIPIF1<0軸的交點為點SKIPIF1<0,與x軸的交點為點A,過點SKIPIF1<0作SKIPIF1<0軸的平行線SKIPIF1<0,交拋物線于點SKIPIF1<0,連接SKIPIF1<0.現(xiàn)有兩動點SKIPIF1<0,SKIPIF1<0分別從SKIPIF1<0,SKIPIF1<0兩點同時出發(fā),點SKIPIF1<0以每秒4個單位的速度沿SKIPIF1<0向終點SKIPIF1<0移動,點SKIPIF1<0以每秒1個單位的速度沿SKIPIF1<0向點SKIPIF1<0移動,點SKIPIF1<0停止運動時,點SKIPIF1<0也同時停止運動,線段SKIPIF1<0,SKIPIF1<0相交于點SKIPIF1<0,過點SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0于點SKIPIF1<0,射線SKIPIF1<0交SKIPIF1<0軸于點SKIPIF1<0.設(shè)動點SKIPIF1<0,SKIPIF1<0移動的時間為SKIPIF1<0(單位:秒)⑴求SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點的坐標(biāo)和拋物線的頂點的坐標(biāo);⑵當(dāng)SKIPIF1<0為何值時,四邊形SKIPIF1<0為平行四邊形?請寫出計算過程;⑶當(dāng)SKIPIF1<0時,SKIPIF1<0的面積是否總為定值?若是,求出此定值,若不是,請說明理由;⑷當(dāng)SKIPIF1<0為何值時,SKIPIF1<0為等腰三角形?請寫出解答過程.⑴∵SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0或SKIPIF1<0,∴SKIPIF1<0;在SKIPIF1<0中,令SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0;由于SKIPIF1<0,故點SKIPIF1<0的縱坐標(biāo)為SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0即SKIPIF1<0,且易求出頂點坐標(biāo)為SKIPIF1<0,于是,SKIPIF1<0,頂點坐標(biāo)為SKIPIF1<0.⑵若四邊形SKIPIF1<0為平行四邊形,由于SKIPIF1<0.故只要SKIPIF1<0即可,而SKIPIF1<0,故SKIPIF1<0,得SKIPIF1<0;⑶設(shè)點SKIPIF1<0運動SKIPIF1<0秒,則SKIPIF1<0,SKIPIF1<0,說明SKIPIF1<0在線段SKIPIF1<0上,且不與點SKIPIF1<0、SKIPIF1<0重合,由于SKIPIF1<0知SKIPIF1<0,故SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.又點SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,∴SKIPIF1<0,于是SKIPIF1<0的面積總為SKIPIF1<0.⑷由⑶知,SKIPIF1<0.構(gòu)造直角三角形后易得SKIPIF1<0,SKIPIF1<0.①若SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.②若SKIPIF1<0,即SKIPIF1<0,無SKIPIF1<0的SKIPIF1<0滿足條件;③若SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,∴SKIPIF1<0或SKIPIF1<0都不滿足SKIPIF1<0,故無SKIPIF1<0的SKIPIF1<0滿足方程;綜上所述:當(dāng)SKIPIF1<0時,SKIPIF1<0是等腰三角形.如圖,拋物線SKIPIF1<0與SKIPIF1<0軸分別相交于點SKIPIF1<0、SKIPIF1<0,它的頂點為SKIPIF1<0,連接SKIPIF1<0,把SKIPIF1<0所在的直線沿SKIPIF1<0軸向上平移,使它經(jīng)過原點SKIPIF1<0,得到直線SKIPIF1<0,設(shè)SKIPIF1<0是直線SKIPIF1<0上一動點.⑴求點SKIPIF1<0的坐標(biāo);⑵以點SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0為頂點的四邊形中,有菱形、等腰梯形、直角梯形,請分別直接寫出這些特殊四邊形的頂點SKIPIF1<0的坐標(biāo);⑶設(shè)以點SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0為頂點的四邊形的面積為SKIPIF1<0,點SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,當(dāng)SKIPIF1<0時,求SKIPIF1<0的取值范圍.⑴由SKIPIF1<0,知點SKIPIF1<0的坐標(biāo)為SKIPIF1<0.⑵①如圖2,菱形SKIPIF1<0的頂點SKIPIF1<0的坐標(biāo)為SKIPIF1<0.②如圖3,等腰梯形SKIPIF1<0的頂點SKIPIF1<0的坐標(biāo)為SKIPIF1<0.③如圖4,直角梯形SKIPIF1<0的頂點SKIPIF1<0的坐標(biāo)為SKIPIF1<0,直角梯形SKIPIF1<0的頂點SKIPIF1<0的坐標(biāo)為SKIPIF1<0.⑶直線SKIPIF1<0的解析式為SKIPIF1<0,那么點SKIPIF1<0的坐標(biāo)可表示為SKIPIF1<0.SKIPIF1<0的面積SKIPIF1<0.①當(dāng)SKIPIF1<0在SKIPIF1<0軸上方時,SKIPIF1<0.解不等式組SKIPIF1<0,得SKIPIF1<0.②當(dāng)SKIPIF1<0在SKIPIF1<0軸下方時,SKIPIF1<0與SKIPIF1<0是同底等高的三角形,面積相等.因此SKIPIF1<0.解不等式組SKIPIF1<0,得SKIPIF1<0.綜上所述,SKIPIF1<0的取值范圍.是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度呈現(xiàn)合集員工管理篇
- 單位管理制度呈現(xiàn)大合集人員管理篇
- 工作轉(zhuǎn)正自我鑒定4篇
- 3D打印在計算機維修中的創(chuàng)新應(yīng)用
- 《用色彩畫心情》課件
- 第3單元+中國特色社會主義道路
- 物流行業(yè)顧問工作總結(jié)
- 乒乓球比賽的作文匯編10篇
- 輸液室護士的職責(zé)概述
- 游樂園前臺服務(wù)感悟
- 【9歷期末】安徽省合肥市包河區(qū)智育聯(lián)盟2023-2024學(xué)年九年級上學(xué)期1月期末歷史試題
- 2024年度專業(yè)外語培訓(xùn)機構(gòu)兼職外教聘任合同3篇
- 個人的車位租賃合同范文-個人車位租賃合同簡單版
- 2025-2025學(xué)年小學(xué)數(shù)學(xué)教研組工作計劃
- 水族館改造合同
- 湖南省益陽市2022-2023學(xué)年高三上學(xué)期數(shù)學(xué)期末試卷
- 【MOOC】教學(xué)研究的數(shù)據(jù)處理與工具應(yīng)用-愛課程 中國大學(xué)慕課MOOC答案
- 《小學(xué)科學(xué)實驗創(chuàng)新》課件
- 拌合站安全事故案例
- 《紅色家書》讀書分享會主題班會課件
- 2025年廣東省春季高考數(shù)學(xué)仿真模擬試卷試題(含答案解析+答題卡)
評論
0/150
提交評論