版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
河北省石家莊市2024學年高二數(shù)學第一學期期末監(jiān)測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線y2=4x的焦點為F,定點,M為拋物線上一點,則|MA|+|MF|的最小值為()A.3 B.4C.5 D.62.新型冠狀病毒(2019-NCoV)因2019年武漢病毒性肺炎病例而被發(fā)現(xiàn),2020年1月12日被世界衛(wèi)生組織命名,為考察某種藥物預防該疾病的效果,進行動物試驗,得到如下列聯(lián)表:患病未患病總計服用藥104555未服藥203050總計3075105下列說法正確的是()參考數(shù)據(jù):,0.050.013.8416.635A.有95%的把握認為藥物有效B.有95%的把握認為藥物無效C.在犯錯誤的概率不超過0.05的前提下認為藥物無效D.在犯錯誤的概率不超過0.01的前提下認為藥物有效3.雙曲線的漸近線方程為A. B.C. D.4.設是虛數(shù)單位,則復數(shù)對應的點在平面內(nèi)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限5.太極圖被稱為“中華第一圖”,閃爍著中華文明進程的光輝,它是由黑白兩個魚形紋組成的圖案,俗稱陰陽魚,太極圖展現(xiàn)了一種相互轉(zhuǎn)化,相對統(tǒng)一的和諧美.定義:能夠?qū)AO的周長和面積同時等分成兩個部分的函數(shù)稱為圓O的一個“太極函數(shù)”,設圓O:,則下列說法中正確的是()①函數(shù)是圓O的一個太極函數(shù)②圓O的所有非常數(shù)函數(shù)的太極函數(shù)都不能為偶函數(shù)③函數(shù)是圓O的一個太極函數(shù)④函數(shù)的圖象關于原點對稱是為圓O的太極函數(shù)的充要條件A.①② B.①③C.②③ D.③④6.執(zhí)行如圖所示的程序框圖,輸出的結果為()A.4 B.9C.23 D.647.已知函數(shù),,若,使得,則實數(shù)的取值范圍是()A. B.C. D.8.已知呈線性相關的變量x與y的部分數(shù)據(jù)如表所示:若其回歸直線方程是,則()x24568y34.5m7.59A.6.5 B.6C.6.1 D.79.函數(shù)在上的極大值點為()A. B.C. D.10.上海世博會期間,某日13時至21時累計入園人數(shù)的折線圖如圖所示,那么在13時~14時,14時~15時,…,20時~21時八個時段中,入園人數(shù)最多的時段是()A.13時~14時 B.16時~17時C.18時~19時 D.19時~20時11.展開式中第3項的二項式系數(shù)為()A.6 B.C.24 D.12.已知雙曲線左右焦點為,過的直線與雙曲線的右支交于,兩點,且,若線段的中垂線過點,則雙曲線的離心率為()A.3 B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若直線:x-2y+1=0與直線:2x+my-1=0相互垂直,則實數(shù)m的值為________.14.若數(shù)列的前n項和,則其通項公式________15.已知,滿足約束條件則的最小值為__________16.已知拋物線的焦點為,過焦點的直線交拋物線與兩點,且,則拋物線的準線方程為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱的所有棱長都是,平面,為的中點,為的中點(1)證明:直線平面;(2)求平面與平面夾角的余弦值18.(12分)為了解某校今年高一年級女生的身體素質(zhì)狀況,從該校高一年級女生中抽取了一部分學生進行“擲鉛球”的項目測試,成績低于5米為不合格,成績在5至7米(含5米不含7米)的為及格,成績在7米至11米(含7米和11米,假定該校高一女生擲鉛球均不超過11米)為優(yōu)秀.把獲得的所有數(shù)據(jù),分成五組,畫出的頻率分布直方圖如圖所示.已知有4名學生的成績在9米到11米之間(1)求實數(shù)的值及參加“擲鉛球”項目測試的人數(shù);(2)若從此次測試成績最好和最差的兩組中隨機抽取2名學生再進行其它項目的測試,求所抽取的2名學生自不同組的概率19.(12分)已知幾何體中,平面平面,是邊長為4的菱形,,是直角梯形,,,且(1)求證:;(2)求平面與平面所成角的余弦值20.(12分)如圖,在四棱錐中,平面,底面是直角梯形,其中,,,,為棱上的點,且.(1)求證:平面;(2)求二面角的正弦值;(3)設為棱上的點(不與,重合),且直線與平面所成角的正弦值為,求的值.21.(12分)某外語學校的一個社團中有7名同學,其中2人只會法語;2人只會英語,3人既會法語又會英語,現(xiàn)選派3人到法國的學校交流訪問(1)在選派的3人中恰有2人會法語的概率;(2)在選派的3人中既會法語又會英語的人數(shù)X的分布列和數(shù)學期望22.(10分)已知橢圓的左、右焦點分別為,,且橢圓過點,離心率,為坐標原點,過且不平行于坐標軸的動直線與有兩個交點,,線段的中點為.(1)求的標準方程;(2)記直線斜率為,直線的斜率為,證明:為定值;(3)軸上是否存在點,使得為等邊三角形?若存在,求出點的坐標;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】作出圖象,過點M作準線的垂線,垂足為H,結合圖形可得當且僅當三點M,A,H共線時|MA|+|MH|最小,求解即可【題目詳解】過點M作準線的垂線,垂足為H,由拋物線的定義可知|MF|=|MH|,則問題轉(zhuǎn)化為|MA|+|MH|的最小值,結合圖形可得當且僅當三點M,A,H共線時|MA|+|MH|最小,其最小值為.故選:B2、A【解題分析】根據(jù)列聯(lián)表計算,對照臨界值即可得出結論【題目詳解】根據(jù)列聯(lián)表,計算,由臨界值表可知,有95%的把握認為藥物有效,A正確故選:A3、A【解題分析】根據(jù)雙曲線的漸近線方程知,,故選A.4、A【解題分析】計算出復數(shù)即可得出結果.【題目詳解】由于,對應的點的坐標為,在第一象限,故選:A.5、B【解題分析】①③可以通過分析奇偶性和結合圖象證明出符合要求,②④可以舉出反例.【題目詳解】是奇函數(shù),且與圓O的兩交點坐標為,能夠?qū)AO的周長和面積同時等分為兩個部分,故符合題意,①正確;同理函數(shù)是圓O的一個太極函數(shù),③正確;例如,是偶函數(shù),也能將將圓O的周長和面積同時等分為兩個部分,故②錯誤;函數(shù)的圖象關于原點對稱不是為圓O的太極函數(shù)的充要條件,例如為奇函數(shù),但不滿足將圓O的周長和面積同時等分為兩個部分,所以④錯誤;故選:B6、C【解題分析】直接按程序框圖運行即可求出結果.【題目詳解】初始化數(shù)值,,第一次執(zhí)行循環(huán)體,,,1≥4不成立;第二次執(zhí)行循環(huán)體,,,2≥4不成立;第三次執(zhí)行循環(huán)體,,,3≥4不成立;第四次執(zhí)行循環(huán)體,,,4≥4成立;輸出故選:C7、A【解題分析】由定義證明函數(shù)的單調(diào)性,再由函數(shù)不等式恒能成立的性質(zhì)得出,從而得出實數(shù)的取值范圍.【題目詳解】任取,,即函數(shù)在上單調(diào)遞減,若,使得,則即故選:A【題目點撥】結論點睛:本題考查不等式恒成立問題,解題關鍵是轉(zhuǎn)化為求函數(shù)的最值,轉(zhuǎn)化時要注意全稱量詞與存在量詞對題意的影響.等價轉(zhuǎn)化如下:(1),,使得成立等價于(2),,不等式恒成立等價于(3),,使得成立等價于(4),,使得成立等價于8、A【解題分析】根據(jù)回歸直線過樣本點的中心進行求解即可.【題目詳解】由題意可得,,則,解得故選:A.9、C【解題分析】求出函數(shù)的導數(shù),利用導數(shù)確定函數(shù)的單調(diào)性,即可求出函數(shù)的極大值點【題目詳解】,∴當時,,單調(diào)遞減,當時,,單調(diào)遞增,當時,,單調(diào)遞減,∴函數(shù)在的極大值點為故選:C10、B【解題分析】要找入園人數(shù)最多的,只要根據(jù)函數(shù)圖象找出圖象中變化最大的即可【題目詳解】結合函數(shù)的圖象可知,在13時~14時,14時~15時,…,20時~21時八個時段中,圖象變化最快的為16到17點之間故選:B.【題目點撥】本題考查折線統(tǒng)計圖的實際應用,屬于基礎題.11、A【解題分析】根據(jù)二項展開式的通項公式,即可求解.【題目詳解】由題意,二項式展開式中第3項,所以展開式中第3項的二項式系數(shù)為.故選:A.12、C【解題分析】由雙曲線的定義得出中各線段長(用表示),然后通過余弦定理得出的關系式,變形后可得離心率【題目詳解】由題意又則有:可得:,,中,中.可得:解得:則有:故選:C二、填空題:本題共4小題,每小題5分,共20分。13、1【解題分析】由兩條直線垂直可知,進而解得答案即可.【題目詳解】因為兩條直線垂直,所以.故答案為:1.14、【解題分析】由和計算【題目詳解】由題意,時,,所以故答案為:15、2【解題分析】由題意,根據(jù)約束條件作出可行域圖,如圖所示,將目標函數(shù)轉(zhuǎn)化為,作出其平行直線,并將其在可行域內(nèi)平行上下移動,當移到頂點時,在軸上的截距最小,即.16、【解題分析】根據(jù)題意作出圖形,設直線與軸的夾角為,不妨設,設拋物線的準線與軸的交點為,過點作準線與軸的垂線,垂足分別為,過點分別作準線和軸的垂線,垂足分別為,進一步可以得到,進而求出,同理求出,最后解得答案.【題目詳解】設直線與軸的夾角為,根據(jù)拋物線的對稱性,不妨設,如圖所示.設拋物線的準線與軸的交點為,過點作準線與軸的垂線,垂足分別為,過點分別作準線和軸的垂線,垂足分別為.由拋物線的定義可知,,同理:,于是,,則拋物線的準線方程為:.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解題分析】(1)取的中點,連接交于,連接,,由平面幾何得,再根據(jù)線面平行的判定可得證;(2)建立如圖所示的空間直角坐標系,利用向量法即可得結果.【小問1詳解】取的中點,連接交于,連接,在三棱柱中,為的中點,,為的中點,且,且,四邊形為平行四邊形,又平面,平面,平面;【小問2詳解】平面,,平面,,,兩兩垂直,以為原點,,,所在直線分別為軸,軸,軸,建立如圖所示的空間直角坐標系,則,,,,設平面的法向量為,則即取,則,,又是平面的一個法向量,,故平面和平面夾角的余弦值為18、(1)0.05,40;(2)【解題分析】(1)因為由頻率分布直方圖可得共五組的頻率和為1所以可得一個關于的等式,即可求出的值.再根據(jù)已知有4名學生的成績在9米到11米之間,可以求出本次參加“擲鉛球”項目測試的人數(shù).本小題要根據(jù)所給的圖表及直方圖作答,頻率的計算易漏乘以組距.(2)因為若此次測試成績最好的共有4名同學.成績最差的共有2名同學.所以從6名同學中抽取2名同學共有15中情況,其中兩人在同組情況由8中.所以可以計算出所求的概率.試題解析:(Ⅰ)由題意可知解得所以此次測試總?cè)藬?shù)為答:此次參加“擲鉛球”的項目測試的人數(shù)為40人(Ⅱ)設從此次測試成績最好和最差的兩組中隨機抽取2名學生自不同組的事件為A:由已知,測試成績在有2人,記為;在有4人,記為.從這6人中隨機抽取2人有,共15種情況事件A包括共8種情況.所以答:隨機抽取的2名學生自不同組的概率為考點:1.頻率分布直方圖.2.概率問題.3.列舉分類的思想.19、(1)證明見解析;(2).【解題分析】(1)根據(jù)菱形的性質(zhì),結合面面垂直的性質(zhì)定理、線面垂直的判定定理和性質(zhì)進行證明即可;(2)建立空間直角坐標系,根據(jù)空間向量夾角公式進行求解即可.【題目詳解】(1)證明:連接,交于點,∵四邊形是菱形,∴,∵平面平面,平面平面,,∴平面,∵平面,∴,又,、平面,∴平面,∵平面,∴(2)解:取的中點,連接,∵是邊長為4的菱形,,∴,,以為原點,,,所在直線分別為,,軸建立如圖所示的空間直角坐標系,則,,,,∴,,設平面的法向量為,則,即,令,則,,∴,同理可得,平面的一個法向量為,∴,由圖知,平面與平面所成角為銳角,故平面與平面所成角余弦值為20、(1)證明見解析;(2);(3).【解題分析】(1)由已知證得,,,以為坐標原點,建立如圖所示的空間直角坐標系,根據(jù)向量垂直的坐標表示和線面垂直的判定定理可得證;(2)根據(jù)二面角的空間向量求解方法可得答案;(3)設,表示點Q,再利用線面角的空間向量求解方法,建立方程解得,可得答案.【題目詳解】(1)因為平面,平面,平面,所以,,又因為,則以為坐標原點,建立如圖所示的空間直角坐標系,由已知可得,,,,,,所以,,,因為,,所以,,又,平面,平面,所以平面.(2)由(1)可知平面,可作為平面的法向量,設平面的法向量因為,.所以,即,不妨設,得.,又由圖示知二面角為銳角,所以二面角的正弦值為.(3)設,即,,所以,即,因為直線與平面所成角的正弦值為,所以,即,解得,即.【題目點撥】本題考查利用空間向量求線面垂直、線面角、二面角的求法,向量法求二面角的步驟:建、設、求、算、?。?、建:建立空間直角坐標系,以三條互相垂直的垂線的交點為原點;2、設:設所需點的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 23《海底世界》說課稿-2024-2025學年三年級下冊語文統(tǒng)編版
- 專項工程造價咨詢修改合同:2024版一
- 2025版高端酒店窗簾制作與安裝合作協(xié)議3篇
- 6 將相和說課稿-2024-2025學年五年級上冊語文統(tǒng)編版
- 哈姆雷特悲劇情節(jié)讀后感
- 2024淘寶年度合作伙伴產(chǎn)品研發(fā)合同模板3篇
- 2024年股權收購與債務重組合同3篇
- 2024年長春婚姻解除合同樣本3篇
- 個人承包2024年度生產(chǎn)線能源管理合同3篇
- 2025年新能源汽車充電樁建設與運營管理合同模板3篇
- 全過程人民民主學習心得體會
- 冠心病診斷與治療課件
- 2023年上海期貨交易所招聘筆試題庫及答案解析
- 新疆少數(shù)民族發(fā)展史課件
- 工程監(jiān)理資料移交單
- 全國醫(yī)療服務價格項目規(guī)范(2012年版)-工作手冊
- 水庫蓄水安全鑒定提供資料要求
- 九月主題計劃《 嗨,你好》
- e乙二醇精制車間設備布置圖
- 縣級綜治中心等級評定細則、申報表、負面清單、流程圖
- 《中外資產(chǎn)評估準則》課件第1章 資產(chǎn)評估準則及其形成機理
評論
0/150
提交評論