版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知,且,,這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則()A.7 B.6 C.5 D.92.如圖所示是正方體的平面展開圖,在這個(gè)正方體中CN與BM所成角為()A.30° B.45° C.60° D.90°3.在直角坐標(biāo)系中,直線的傾斜角是A. B. C. D.4.演講比賽共有9位評(píng)委分別給出某選手的原始評(píng)分,評(píng)定該選手的成績(jī)時(shí),從9個(gè)原始評(píng)分中去掉1個(gè)最高分、1個(gè)最低分,得到7個(gè)有效評(píng)分.7個(gè)有效評(píng)分與9個(gè)原始評(píng)分相比,不變的數(shù)字特征是A.中位數(shù) B.平均數(shù)C.方差 D.極差5.已知組數(shù)據(jù),,…,的平均數(shù)為2,方差為5,則數(shù)據(jù)2+1,2+1,…,2+1的平均數(shù)與方差分別為()A.=4,=10 B.=5,=11C.=5,=20 D.=5,=216.已知在中,,那么的值為()A. B. C. D.7.下列說(shuō)法不正確的是()A.空間中,一組對(duì)邊平行且相等的四邊形是一定是平行四邊形;B.同一平面的兩條垂線一定共面;C.過直線上一點(diǎn)可以作無(wú)數(shù)條直線與這條直線垂直,且這些直線都在同一個(gè)平面內(nèi);D.過一條直線有且只有一個(gè)平面與已知平面垂直.8.已知函數(shù),則在上的單調(diào)遞增區(qū)間是()A. B. C. D.9.已知等比數(shù)列的前項(xiàng)和為,,,則()A.31 B.15 C.8 D.710.已知,,,則()A. B. C.-7 D.7二、填空題:本大題共6小題,每小題5分,共30分。11.求值:_____.12.已知關(guān)于實(shí)數(shù)x,y的不等式組構(gòu)成的平面區(qū)域?yàn)椋?,使得恒成立,則實(shí)數(shù)m的最小值是______.13.已知求______________.14.在數(shù)列中,按此規(guī)律,是該數(shù)列的第______項(xiàng)15.若,則________.16.在中,已知角的對(duì)邊分別為,且,,,若有兩解,則的取值范圍是__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.某工廠共有200名工人,已知這200名工人去年完成的產(chǎn)品數(shù)都在區(qū)間(單位:萬(wàn)件)內(nèi),其中每年完成14萬(wàn)件及以上的工人為優(yōu)秀員工,現(xiàn)將其分成5組,第1組、第2組第3組、第4組、第5組對(duì)應(yīng)的區(qū)間分別為,,,,,并繪制出如圖所示的頻率分布直方圖.(1)選取合適的抽樣方法從這200名工人中抽取容量為25的樣本,求這5組分別應(yīng)抽取的人數(shù);(2)現(xiàn)從(1)中25人的樣本中的優(yōu)秀員工中隨機(jī)選取2名傳授經(jīng)驗(yàn),求選取的2名工人在同一組的概率.18.定理:若函數(shù)的圖象關(guān)于直線對(duì)稱,且方程有個(gè)根,則這個(gè)根之和為.利用上述定理,求解下列問題:(1)已知函數(shù),,設(shè)函數(shù)的圖象關(guān)于直線對(duì)稱,求的值及方程的所有根之和;(2)若關(guān)于的方程在實(shí)數(shù)集上有唯一的解,求的值.19.已知等比數(shù)列滿足,,等差數(shù)列滿足,,求數(shù)列的前項(xiàng)和.20.如圖,在四邊形中,,,,.(1)若,求;(2)求四邊形面積的最大值.21.如圖半圓的直徑為4,為直徑延長(zhǎng)線上一點(diǎn),且,為半圓周上任一點(diǎn),以為邊作等邊(、、按順時(shí)針方向排列)(1)若等邊邊長(zhǎng)為,,試寫出關(guān)于的函數(shù)關(guān)系;(2)問為多少時(shí),四邊形的面積最大?這個(gè)最大面積為多少?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
由,可得成等比數(shù)列,即有=4;討論成等差數(shù)列或成等差數(shù)列,運(yùn)用中項(xiàng)的性質(zhì),解方程可得,即可得到所求和.【詳解】由,可得成等比數(shù)列,即有=4,①若成等差數(shù)列,可得,②由①②可得,1;若成等差數(shù)列,可得,③由①③可得,1.綜上可得1.故選:C.【點(diǎn)睛】本題考查等差數(shù)列和等比數(shù)列的中項(xiàng)的性質(zhì),考查運(yùn)算能力,屬于中檔題.2、C【解析】
把展開圖再還原成正方體如圖所示:由于BE和CN平行且相等,故∠EBM(或其補(bǔ)角)為所求.再由△BEM是等邊三角形,可得∠EBM=60°,從而得出結(jié)論.【詳解】把展開圖再還原成正方體如圖所示:由于BE和CN平行且相等,故異面直線CN與BM所成的角就是BE和BM所成的角,故∠EBM(或其補(bǔ)角)為所求,再由BEM是等邊三角形,可得∠EBM=60,故選:C【點(diǎn)睛】本題主要考查了求異面直線所成的角,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.3、A【解析】
先根據(jù)直線的方程,求出它的斜率,可得它的傾斜角.【詳解】在直角坐標(biāo)系中,直線的斜率為,等于傾斜角的正切值,故直線的傾斜角是,故選.【點(diǎn)睛】本題主要考查直線的傾斜角和斜率的求法.4、A【解析】
可不用動(dòng)筆,直接得到答案,亦可采用特殊數(shù)據(jù),特值法篩選答案.【詳解】設(shè)9位評(píng)委評(píng)分按從小到大排列為.則①原始中位數(shù)為,去掉最低分,最高分,后剩余,中位數(shù)仍為,A正確.②原始平均數(shù),后來(lái)平均數(shù)平均數(shù)受極端值影響較大,與不一定相同,B不正確③由②易知,C不正確.④原極差,后來(lái)極差可能相等可能變小,D不正確.【點(diǎn)睛】本題旨在考查學(xué)生對(duì)中位數(shù)、平均數(shù)、方差、極差本質(zhì)的理解.5、C【解析】
根據(jù)題意,利用數(shù)據(jù)的平均數(shù)和方差的性質(zhì)分析可得答案.【詳解】根據(jù)題意,數(shù)據(jù),,,的平均數(shù)為2,方差為5,則數(shù)據(jù),,,的平均數(shù),其方差;故選.【點(diǎn)睛】本題考查數(shù)據(jù)的平均數(shù)、方差的計(jì)算,關(guān)鍵是掌握數(shù)據(jù)的平均數(shù)、方差的計(jì)算公式,屬于基礎(chǔ)題.6、A【解析】
,不妨設(shè),,則,選A.7、D【解析】一組對(duì)邊平行就決定了共面;同一平面的兩條垂線互相平行,因而共面;這些直線都在同一個(gè)平面內(nèi)即直線的垂面;把書本的書脊垂直放在桌上就明確了8、C【解析】
先令,則可求得的單調(diào)區(qū)間,再根據(jù),對(duì)賦值進(jìn)而限定范圍即可【詳解】由題,令,則,當(dāng)時(shí),在上單調(diào)遞增,則當(dāng)時(shí),的單調(diào)增區(qū)間為,故選:C【點(diǎn)睛】本題考查正弦型函數(shù)的單調(diào)區(qū)間,屬于基礎(chǔ)題9、B【解析】
利用基本元的思想,將已知條件轉(zhuǎn)化為的形式,由此求得,進(jìn)而求得.【詳解】由于數(shù)列是等比數(shù)列,故,由于,故解得,所以.故選:B.【點(diǎn)睛】本小題主要考查等比數(shù)列通項(xiàng)公式的基本量的計(jì)算,考查等比數(shù)列前項(xiàng)和公式,屬于基礎(chǔ)題.10、C【解析】
把已知等式平方后可求得.【詳解】∵,∴,即,,∵,∴,∴,,∴.故選C.【點(diǎn)睛】本題考查同角間的三角函數(shù)關(guān)系,考查兩角和的正切公式,解題關(guān)鍵是把已知等式平方,并把1用代替,以求得.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)同角三角函數(shù)的基本關(guān)系:,以及反三角函數(shù)即可解決?!驹斀狻坑深}意.故答案為:.【點(diǎn)睛】本題主要考查了同角三角函數(shù)的基本關(guān)系,同角角三角函數(shù)基本關(guān)系主要有:,.屬于基礎(chǔ)題。12、【解析】
由,使得恒成立可知,只需求出的最大值即可,再由表示平面區(qū)域內(nèi)的點(diǎn)與定點(diǎn)距離的平方,因此結(jié)合平面區(qū)域即可求出結(jié)果.【詳解】作出約束條件所表示的可行域如下:由,使得恒成立可知,只需求出的最大值即可;令目標(biāo)函數(shù),則目標(biāo)函數(shù)表示平面區(qū)域內(nèi)的點(diǎn)與定點(diǎn)距離的平方,由圖像易知,點(diǎn)到的距離最大.由得,所以.因此,即的最小值為37.故答案為37【點(diǎn)睛】本題主要考查簡(jiǎn)單的線性規(guī)劃問題,只需分析清楚目標(biāo)函數(shù)的幾何意義,即可結(jié)合可行域來(lái)求解,屬于??碱}型.13、23【解析】
直接利用數(shù)量積的坐標(biāo)表示求解.【詳解】由題得.故答案為23【點(diǎn)睛】本題主要考查平面向量的數(shù)量積的計(jì)算,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.14、【解析】
分別求出,,,結(jié)果構(gòu)成等比數(shù)列,進(jìn)而推斷數(shù)列是首相為2,公比為2的等比數(shù)列,進(jìn)而求得數(shù)列的通項(xiàng)公式,再由求得答案.【詳解】,,,依此類推可得,,,即.,解得.故答案為:7.【點(diǎn)睛】本題考查利用數(shù)列的遞推關(guān)系求數(shù)列的通項(xiàng)公式,求解的關(guān)鍵在于推斷是等比數(shù)列,再用累加法求得數(shù)列的通項(xiàng)公式,考查邏輯推理能力和運(yùn)算求解能力.15、【解析】
先求,再代入求值得解.【詳解】由題得所以.故答案為【點(diǎn)睛】本題主要考查共軛復(fù)數(shù)和復(fù)數(shù)的模的求法,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平,屬于基礎(chǔ)題.16、【解析】
利用正弦定理得到,再根據(jù)有兩解得到,計(jì)算得到答案.【詳解】由正弦定理得:若有兩解:故答案為【點(diǎn)睛】本題考查了正弦定理,有兩解,意在考查學(xué)生的計(jì)算能力.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17、(1)第1組:2;第2組:8,;第3組:9;第4組:3;第5組:3(2)【解析】
(1)根據(jù)頻率之和為列方程,解方程求得的值.然后根據(jù)分層抽樣的計(jì)算方法,計(jì)算出每組抽取的人數(shù).(2)利用列舉法,結(jié)合古典概型概率計(jì)算公式,計(jì)算出所求概率.【詳解】(1):,.用分層抽樣比較合適.第1組應(yīng)抽取的人數(shù)為,第2組應(yīng)抽取的人數(shù)為,第3組應(yīng)抽取的人數(shù)為,第4組應(yīng)抽取的人數(shù)為,第5組應(yīng)抽取的人數(shù)為.(2)(1)中25人的樣本中的優(yōu)秀員工中,第4組有3人,記這3人分別為,第5組有3人,記這3人分別為.從這6人中隨機(jī)選取2名,所有的基本事件為:,,,,,,,,,,,,,,,共有15個(gè)基本事件.選取的2名工人在同一組的基本事件有,,,,,共6個(gè),故選取的2名工人在同一組的概率為.【點(diǎn)睛】本小題主要考查補(bǔ)全頻率分布,考查分層抽樣,考查古典概型的計(jì)算,屬于基礎(chǔ)題.18、(1),;(2).【解析】
(1)根據(jù)定義域和對(duì)稱性即可得出的值,求出的解的個(gè)數(shù),利用定理得出所有根的和;(2)令,則為偶函數(shù),于是的唯一零點(diǎn)為,于是,即可解出的值.【詳解】解:(1)在上的圖象關(guān)于直線對(duì)稱,,令得,,即,.在上有7個(gè)零點(diǎn),方程的所以根之和為.(2)令,則,是偶函數(shù),的圖象關(guān)于軸對(duì)稱,即關(guān)于直線對(duì)稱,只有1解,的唯一解為,即,,解得.【點(diǎn)睛】本題考查了函數(shù)零點(diǎn)與函數(shù)圖象對(duì)稱性的關(guān)系,屬于基礎(chǔ)題.19、【解析】
由等比數(shù)列易得公比和,進(jìn)而可得等差數(shù)列的首項(xiàng)和公差,代入求和公式計(jì)算可得.【詳解】解:∵等比數(shù)列滿足,,
∴公比,
,
,
∴等差數(shù)列中,
∴公差,
∴數(shù)列的前項(xiàng)和.【點(diǎn)睛】本題考查等差數(shù)列的求和公式,涉及等比數(shù)列的通項(xiàng)公式,求出數(shù)列的首項(xiàng)和公差是解決問題的關(guān)鍵,屬基礎(chǔ)題.20、(1);(2).【解析】
(1)直接利用余弦定理,即可得到本題答案;(2)由四邊形ABCD的面積=,得四邊形ABCD的面積,求S的最大值即可得到本題答案.【詳解】(1)當(dāng)時(shí),在中,由余弦定理得,設(shè)(),則,即,解得,所以;(2)的面積為,在中,由余弦定理得,所以,的面積為,所以,四邊形的面積為,因?yàn)?所以當(dāng)時(shí),四邊形的面積最大,最大值為.【點(diǎn)睛】本題主要考查利用余弦定理、面積公式及三角函數(shù)的性質(zhì)解決實(shí)際問題.21、(1);(2)θ=時(shí),四邊形OACB的面積最大,其最大面積為.【解析】
(1)根據(jù)余弦定理可求得(2)先表示出△ABC的面積及△OAB的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 保險(xiǎn)團(tuán)體意外險(xiǎn)合同
- 2025美容店加盟合同
- wep協(xié)議的工作流程
- ets協(xié)議簽訂流程
- 2024版技術(shù)轉(zhuǎn)讓合同服務(wù)內(nèi)容與技術(shù)標(biāo)的
- 2024版物業(yè)公司勞務(wù)派遣合同
- 2025簡(jiǎn)單個(gè)人向公司借款合同范本
- 2024版房產(chǎn)借款協(xié)議書
- 2025新科普版英語(yǔ)七年級(jí)下單詞默寫單
- 2025杭州市新建房屋白蟻預(yù)房工程合同
- 醫(yī)療器械考試題及答案
- 初三家長(zhǎng)會(huì)數(shù)學(xué)老師發(fā)言稿
- 投資計(jì)劃書模板計(jì)劃方案
- 責(zé)任護(hù)理組長(zhǎng)競(jìng)選
- 法人代持免責(zé)任協(xié)議書(2篇)
- 閘站監(jiān)理實(shí)施細(xì)則
- 2024-2025學(xué)年湖北省恩施土家族苗族自治州數(shù)學(xué)六上期末檢測(cè)試題含解析
- 2024年中國(guó)寵物殯葬服務(wù)行業(yè)市場(chǎng)規(guī)模及發(fā)展前景研究報(bào)告(智研咨詢)
- 礦用電纜市場(chǎng)發(fā)展預(yù)測(cè)和趨勢(shì)分析
- 失蹤老人歸家協(xié)議書模板
- 單位委托員工辦理水表業(yè)務(wù)委托書
評(píng)論
0/150
提交評(píng)論