




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
Chapter1:
SemiconductorDiodes全套PPT課件DiodesAdiodeisa2-terminaldevice.Adiodeideallyconductscurrentinonlyonedirection.21.2SemiconductorMaterialsCommonmaterialsusedinthedevelopmentofsemiconductordevices:Silicon(Si)Germanium(Ge)GaAs3Fig.1.3Atomicstructureof(a)silicon;(b)germanium;and(c)galliumandarsenic.Fig.1.4Covalentbondingofthesiliconatom.1.3CovalentBondingandIntrinsicMaterialsThesingle-crystalformedbypuresemiconductormaterialsiscalledintrinsicsemiconductor.IntrinsicSemiconductorsHoles:VacanciesinthecovalentbondElectron-holepairs:afreeelectronandaholeisgeneratedfromthecovalentbondbythermalenergyMovementofHoles:bymovementofcovalentelectronsfromadjacentcovalentbondsTwotypesofchargedparticles(Intrinsiccarriers)inasemiconductorfreeelectronsholesElectricalconductivityofintrinsicsemiconductorsisdeterminedbytheconcentrationoffreeelectronsandholes1.4ExtrinsicMaterials:n-Typeandp-TypeMaterialsTheelectricalcharacteristicsofintrinsicsemiconductorsareimprovedbyaddingimpuritymaterialsinaprocesscalleddoping.
Thematerialscontainingimpurityatomsarecalledextrinsicsemiconductors,ordopedsemiconductors.Therearejusttwotypesofdopedsemiconductormaterials:n-type:impuritiesarefromgroupVelements,e.x.Phosphorusp-type:impuritiesarefromgroupIIIelements,e.x.Boron6N-typeSemiconductorsandCarriersAsemiconductorthatcontainsdonorimpurityatomsiscalledaN-typesemiconductor.Impuritiesinn-typematerialsactasDonorThemajoritycarriersinn-typematerialsareelectrons.Theminoritycarriersinn-typematerialsareholes.Phosphorusimpurityinn-typematerial.P-typeSemiconductorsandCarriersBoronimpurityinp-typematerial.AsemiconductorthatcontainsacceptorimpurityatomsiscalledaP-typesemiconductor.Impuritiesinp-typematerialsactasAcceptorThemajoritycarriersinp-typematerialsareholes.Theminoritycarriersinp-typematerialsare
electrons.n-typesemiconductorp-typesemiconductormajoritycarriers:electronsholesminoritycarriers:holeselectronsmass-actionlaw:ordopingn-typep-typeintrinsicsemiconductorextrinsicsemiconductor1.5
SemiconductorDiodeOneendofasiliconorgermaniumcrystalcanbedopedasap-typematerialandtheotherendasann-typematerial.Theresultisap-njunction.10Theresultistheformationofadepletionregionaroundthejunction.PNAnode(A)Cathode(K)DiodeOperatingConditionsAdiode(orp-njunction)hasthreeoperatingconditions:Nobias11ReversebiasForwardbiasExternalvoltageisappliedacrossthep-njunctionintheoppositepolarityofthep-andn-typematerials.DiodeOperatingConditions:
ReverseBiasReverseBiasThereversevoltagecausesthedepletionlayertowiden.Theelectronsinthen-typematerialareattractedtowardthepositiveterminal.Theholesinthep-typematerialareattractedtowardthenegativeterminal.12DiodeOperatingConditions:ForwardBiasForwardBiasExternalvoltageisappliedacrossthep-njunctioninthesamepolarityasthep-andn-typematerials.Theforwardvoltagecausesthedepletionlayertonarrow.Theelectronsandholesarepushedtowardthep-njunction.Theelectronsandholeshavesufficientenergytocrossthep-njunction.Theforwardbiasvoltagerequired:
silicondiode0.7V
germaniumdiode0.3VI-VCharacteristicsofSemiconductorDiodes14TheZenerregionisinthediode’sreverse-biasregion.Atsomepointthereversebiasvoltageissolargethediodebreaksdownandthereversecurrentincreasesdramatically.ZenerRegionTwomechanismsofelectricalbreakdownAvalanchebreakdownZener
breakdownThemaximumreverse-biasvoltagethatcanbeappliedbeforeenteringtheZenerregioniscalledthePeakInverseVoltage(PIV)orPeakReverseVoltage(PRV)TemperatureEffectsAstemperatureincreasesitaddsenergytothediode.Itreducestherequiredforwardbiasvoltageforforward-biasconduction.Itincreasestheamountofreversecurrentinthereverse-biascondition.Itincreasesmaximumreversebiasavalanchevoltage.Germaniumdiodesaremoresensitivetotemperaturevariationsthansilicondiodes.Semiconductordiodes(/pnjunction)actdifferentlytoDCandACcurrents.Therearethreetypesofresistances:
?
DC,orstatic,resistance
?
AC,ordynamic,resistance
?
AverageACresistance1.7ResistanceLevels17DC,orStatic,ResistanceForaspecificappliedDCvoltageVD,thediodehasaspecificcurrentID,andaspecificresistanceRD.Example1.2
AC,orDynamic,ResistanceExample1.3
TheacresistancedependsonDCoperatingpoint(ID)inthediode.rB
:bodyresistanceandcontactresistance.Itisverysmall(0.1
~2).InsomecasesrBcanbeignored.AC,orDynamic,ResistanceIntheforwardbiasregion:Inthereversebiasregion:Theresistanceisessentiallyinfinite.Thediodeactslikeanopen.1.8DiodeEquivalentCircuits21Therearethreeequivalentcircuitsforadiode:IdealEquivalentCircuitPiecewise-LinearEquivalentCircuitSimplified/ApproximateEquivalentCircuitIdeal
EquivalentCircuitOn-offSwitchConductioninonedirectionPiecewise-Linear
EquivalentCircuit23Simplified
EquivalentCircuitInreversebias,thedepletionlayerisverylarge.Thediode’sstrongpositiveandnegativepolaritiescreatetransition-ordepletion-regioncapacitance,CT.Theamountofcapacitancedependsonthereversevoltageapplied.
Inforwardbiasstoragecapacitanceor
diffusioncapacitance(CD)existsbesidesbarriercapacitanceasthediodevoltageincreases.1.9DiodeCapacitanceVF,forwardvoltageataspecificcurrentandtemperatureIF,maximumforwardcurrentataspecifictemperatureIR,maximumreversecurrentataspecifictemperaturePIVorPRVorV(BR),maximumreversevoltageataspecifictemperaturePowerdissipation,maximumpowerdissipatedataspecifictemperatureC,capacitancelevelsinreversebiastrr,reverserecoverytimeTemperatures,operatingandstoragetemperatureranges1.11DiodeSpecificationSheetsDataaboutadiodeispresenteduniformlyformanydifferentdiodes.Thismakescross-matchingofdiodesforreplacementordesigneasier.
25OtherTypesofDiodesZenerdiodeLight-emittingdiode(LED)PhotodiodeVaractordiodeAZenerisadiodeoperatedinreversebiasattheZenervoltage(VZ).CommonZenervoltagesarebeween1.8Vand200VImportantparametersforZenerDiodes:1.13ZenerDiodeSummaryofChapter1KeyItemsConstructionofap-njunctionCharacteristicsofasemiconductordiode(/p-njunction)-ElectricalconductioninonlyonedirectionDCresistanceandACresistanceEquivalentcircuitsforasemiconductordiodeChapter2:
DiodeApplications292.2Load-LineAnalysisTheloadlineplotsallpossiblecurrent(ID)conditionsforallvoltagesappliedtothediode(VD)inagivencircuit.E/RisthemaximumIDandEisthemaximumVD.WheretheloadlineandthecharacteristiccurveintersectistheQ-point,whichspecifiesaparticularIDandVDforagivencircuit.Load-lineanalysisCharacteristiccurveofthesolid-statedeviceLoadlineofthecircuit2.3EquivalentModelAnalysisConstantsasknownSiliconDiode:VD=0.7VGermaniumDiode:VD=0.3VAnalysisVD=0.7VVR=E–VDID=IR=IT=VR/RForwardBias:E>0.7ReverseBias:E<0.7DiodesideallybehaveasopencircuitsAnalysisVD=EVR=0VID=0AEquivalentModelAnalysis
Step1.Makeassumptions(‘short/forward’or‘open/reverse’)
Step2.Analysis/Checkassumptions
Step3.MakefinaldecisionExample2.4DetermineID,VD2,andVoStep1.MakeAssumptionsStep2.Analysis/CheckassumptionsStep3.Makefinaldecision2.5Half-WaveRectificationThediodeonlyconductswhenitisinforwardbias,thereforeonlyhalfoftheACcyclepassesthroughthediode.TheDCoutputvoltageis0.318Vm,whereVm=thepeakACvoltage.Note:Itisimportantthatthereversebreakdownvoltageratingofthediodebehighenoughtowithstandthepeakreverse-biasingACvoltage:Vm<PIV(orPRV)Usinganidealdiodeequivalent
UsingasimplifieddiodeequivalentExample2.82.6Full-WaveRectificationHalf-wave:Vdc=0.318Vm
Full-wave:Vdc=0.636VmTherectificationprocesscanbeimprovedbyusingmorediodesinafull-waverectifiercircuit.Full-waverectificationproducesagreaterDCoutput:Full-WaveRectificationBridgeRectifierFourdiodesarerequiredVDC=0.636Vm Full-WaveRectificationCenter-TappedTransformerRectifierRequiresTwodiodesCenter-tappedtransformerVDC=0.636(Vm)Example2.92.9ZenerDiodesTheZenerdiodeisoperatedinreversebiasattheZenerVoltage(Vz).WhenVi
VzTheZenerisonVoltageacrosstheZenerisVz
Zenercurrent:IZTheZenerPower:PZ=VZIZWhenVi<VzTheZenerisoffTheZeneractsasanopencircuitStep1.DeterminethestateoftheZenerdiodebyremovingitfromthenetworkandcalculatingthevoltageacrosstheresultingopencircuit.Step2.Substitutetheappropriateequivalentandsolveforthedesiredunknowns.Example2.17.FixedVi,FixedRLExample2.18.FixedVi,VariableRLExample2.19.VariableVi,FixedRLSummaryofChapter2AnalysismethodsofdiodecircuitsEquivalentModelLoad-LineAnalysisApplicationofDiodes
RectifierConversionsofACtoDCforDCoperatedcircuitsBatteryChargingCircuitsZenerDiodes:RegulatorOver
voltageProtectionSettingReferenceVoltages
Clipper/limiter:selfstudy
Clamper:selfstudy…Chapter3:
BipolarJunctionTransistors433.2TransistorConstructionTherearetwotypesoftransistors:pnp
npnTheterminalsarelabeled:E–EmitterB–BaseC–CollectorFeaturesofeachdopedregion:E–
HighlydopedB–
Verynarrow,lowestdopedC–
lowerdoped,largesurfaceTherearetwopnjunctions:Base-EmitterjunctionBase-Collectorjunctionpnpnpn3.3TransistorOperationTherefouroperationmodesdependingonthebiasconditionofeachpnjunction:Emitter-BasejunctionBase-CollectorjunctionActiveoperation(linearamplification)ForwardbiasReversebiasSaturationregionForwardbiasForwardbiasCutoffregionReversebiasReversebiasReverseoperationReversebiasForwardbiasTheactiveoperationregionisnormallyemployedforlinear(undistorted)amplifiers.CurrentsinaTransistorWiththeexternalsources,VEEandVCC,connectedasshownbelow:Theemitter-basejunctionisforwardbiasedThebase-collectorjunctionisreversebiasedThecollectorcurrentiscomprisedoftwocurrents:Emittercurrentisthesumofthecollectorandbasecurrents:PNPNPN3.4Common-BaseConfigurationCB:Thebaseiscommontobothinput(emitter–base)andoutput(collector–base)ofthetransistor.ThreebasicconfigurationsofaBJTaccordingtothecommonterminal:InputterminalCommonterminalOutputterminalCommon-Base(CB)EmitterBaseCollectorCommon-Emitter(CE)BaseEmitterCollectorCommon-Collector(CC)BaseCollectorEmitterCommon-BaseAmplifierInputCharacteristicsThiscurveshowstherelationshipbetweenofinputcurrent(IE)toinputvoltage(VBE)forvariouslevelsofoutputvoltage(VCB).Thisgraphdemonstratestheoutputcurrent(IC)
toanoutputvoltage(VCB)
forvariouslevelsofinputcurrent(IE).OutputCharacteristics
OperatingRegionsCutoffregion—Theamplifierisbasicallyoff.Thereisvoltage,butlittlecurrent.Saturationregion—Theamplifierisfullon.Thereiscurrent,butlittlevoltage.Activeregion—Operatingrangeoftheamplifier.Emitterandcollectorcurrents:Base-emittervoltage:Inactiveregion:ICBO=minoritycollectorcurrent.Thisisusuallysosmallthatitcanbeignored
Ideally:a=1Inreality:aisbetween0.9and0.998Alpha(a)Alpha()relatestheDCcurrentsICandIE:
Alpha()intheACmode:3.6Common–EmitterConfigurationCE:Theemitteriscommontobothinput(base-emitter)andoutput(collector-emitter).Theinputisonthebaseandtheoutputisonthecollector.Common-EmitterCharacteristicsBaseCharacteristicsInputCharacteristicsThiscurveshowstherelationshipbetweenofinputcurrent(IB)toinputvoltage(VBE)forvariouslevelsofoutputvoltage(VCE).CollectorCharacteristicsThisgraphdemonstratestheoutputcurrent(IC)
toanoutputvoltage(VCE)
forvariouslevelsofinputcurrent(IB).OutputCharacteristicsCommon-EmitterAmplifierCurrentsIdealCurrentsIE
=IC
+IB
IC
=IE
ActualCurrentsIC=IE+ICBOWhenIB=0Athetransistorisincutoff,butthereissomeminoritycurrentflowingcalledICEO.whereICBO=minoritycollectorcurrent.Thisisusuallysosmallthatitcanbeignored,exceptinhighpowertransistorsandinhightemperatureenvironments.Beta()InDCmode:InACmode:representstheamplificationfactorofatransistor.(issometimesreferredtoashfe,atermusedintransistormodelingcalculations)54DeterminingfromaGraphBeta()Note:AC
≈
DCRelationshipbetweenamplificationfactorsandBeta()RelationshipBetweenCurrents563.7Common–CollectorConfigurationCC:Thecollectoriscommontobothinput(base-collector)andoutput(emitter-collector).Theinputisonthebaseandtheoutputisontheemitter.Thecharacteristicsaresimilartothoseofthecommon-emitterconfiguration,excepttheverticalaxisisIE.VCEisatmaximumandICisatminimum(ICmin=ICEO)inthecutoffregion.ICisatmaximumandVCEisatminimum(VCEmin=VCEsat=VCEO)inthesaturationregion.Thetransistoroperatesintheactiveregionbetweensaturationandcutoff.3.8LimitationsofOperationCommon-emitter:CEConfigurationmore…3.9TransistorSpecificationSheetSummaryofChapter3
KeyInformationTransistorconstructionandoperationCurrentrelationship
ThreeBasicConfigurations:CECBCCCharacteristicsofCE,CBandCCconfigurationTransistorOperationRegionsActiveregionCutoffregionSaturationregion
ApplicationKeyNotesLimitsofOperationChapter4:
DCBiasing–BJTsBiasingBiasing
referstotheDCvoltagesappliedtoatransistorinordertoturnitonsothatitcanamplifytheACsignal.ToprovideenergyforamplificationToprovideaproperresponsetoaninputACsignalbydeterminingtheoperatingpointDCandACresponsearedifferent,soDCanalysiscanbetotallyseparatedfromtheacresponseThechoiceofparametersforDClevelswillaffecttheACresponse,andviceversaNonlinearDevices4.2OperatingPointTheDCinputestablishesanoperatingorquiescentpointcalledtheQ-point.
ActiveorLinearRegionOperationBase–EmitterjunctionisforwardbiasedBase–Collectorjunctionisreversebiased
CutoffRegionOperationBase–Emitterjunctionisreversebiased
SaturationRegionOperationBase–EmitterjunctionisforwardbiasedBase–CollectorjunctionisforwardbiasedBiasingandThreeStatesofOperationFixed-biascircuitEmitter-stabilizedbiascircuitVoltagedividerbiascircuitDCbiaswithvoltagefeedbackDCBiasingCircuits4.3FixedBiasCircuitSketchingtheDCequivalentisthefirststepforDCanalysis:Replacingthecapacitorwithanopen-circuitequivalent.Replacingtheinductorwithashort-circuitequivalent.DCsupplycanbeseparatedforanalysispurposeonlyMathematicalAnalysisFromKirchhoff’svoltagelaw:Solvingforthebasecurrent:+VCC–IBRB–VBE=0Base-emitterloopThecollectorcurrentisgivenby:FromKirchhoff’svoltagelaw:Collector-emitterloopTransistorSaturationWhenthetransistorisoperatinginthesaturationregion,itisconductingatmaximumcurrentflowthroughthetransistor.TransistorSaturationLevelLoadLineAnalysisICsatIC=VCC/RCVCE=0VVCEcutoffVCE=VCCIC=0mAwherethevalueofRBsetsthevalueofIBwhereIBandtheloadlineintersectthatsetsthevaluesofVCEandICTheQ-pointistheparticularoperatingpoint:Theendpointsoftheloadlineare:LoadequationbyKVL:CircuitValuesAffecttheQ-Pointmore…4.4Emitter-StabilzedBiasCircuitStability
referstoabiascircuitinwhichthecurrentsandvoltageswillremainfairlyconstantforawiderangeoftemperaturesandtransistorBeta()values.Addingaresistor(RE)totheemitterimprovesthestabilityofatransistor.ImprovedBiasedStability
MathematicalAnalysis
FromKirchhoff’svoltagelaw:SinceIE=(b+1)IB:SolvingforIB:FromKirchhoff’svoltagelaw:SinceIE
IC:Also:Collector-EmitterLoop
Base-EmitterLoop
Thecollectorcurrentisgivenby:TheroleofRE?
LoadlineAnalysis
VCEcutoff:
ICsat:Theendpointscanbedeterminedfromtheloadline.LoadequationbyKVL:4.5VoltageDividerBiasThisisaverystablebiascircuit.Thecurrentsandvoltagesarealmostindependentof
variationsin.ApproximateAnalysis
WhereIB<<I1andI2andI1
I2:WherebRE
>10R2:FromKirchhoff’svoltagelaw:4.6DCBiaswithVoltageFeedback
Anotherwaytoimprovethestabilityofabiascircuitistoaddafeedbackpathfromcollectortobase.InthisbiascircuittheQ-pointisonlyslightlydependentonthetransistorbeta,.Base-EmitterLoopFromKirchhoff’svoltagelaw:WhereIB<<IC:KnowingIC=IBandIE
IC,the
loopequationbecomes:SolvingforIB:ApplyingKirchoff’svoltagelaw:IERE+VCE+ICRC–VCC=0SinceIC
ICandIC=IB:IC(RC+RE)+VCE–VCC=0SolvingforVCE:VCE=VCC–IC(RC+RE)Base-EmitterLoopCollector-EmitterLoop4.8TransistorSwitchingNetworksTransistorswithonlytheDCsourceappliedcanbeusedaselectronicswitches.ICissensitiveto,temperature,VBE,andICO4.10BiasStabilizationSummaryofChapter4
Note:
Theanalysisforpnptransistorbiasingcircuitsisthesameasthatfornpntransistorcircuits.Theonlydifferenceisthatthecurrentsareflowingintheoppositedirection.DCanalysis:DCequivalentcircuitMathematicalanalysis(VBE=.7V)Load-lineanalysisTypicalDCbiasingcircuitsFixed-biascircuitEmitter-stabilizedbiascircuitVoltagedividerbiascircuitDCbiaswithvoltagefeedbackFactorsaffectingbiasstability79Chapter5:
BJTACAnalysis805.3BJTTransistorModelingAmodelisanequivalentcircuitthatrepresentstheACcharacteristicsofthetransistor.Amodelusescircuitelementsthatapproximatethebehaviorofthetransistor.TherearethreemodelscommonlyusedinsmallsignalACanalysisofatransistor:remodelHybridequivalentmodelHybrid∏modelACnetworkACequivalentcircuitSketchanACnetwork:RemoveDCsupplies(replacedbyshort)Thecouplingcapacitorandbypasscapacitorcanbereplacedbyashort815.4ThereTransistorModelBJTsarebasicallycurrent-controlleddevices,thereforetheremodelusesadiodeandacurrentsourcetoduplicatethebehaviorofthetransistor.OnedisadvantagetothismodelisitssensitivitytotheDClevel.Thismodelisdesignedforspecificcircuitconditions.82Common-BaseConfigurationInputimpedance:LowOutputimpedance:HighVoltagegain:voltageamplificationCurrentgain:NocurrentamplificationremodelforCBconfiguration83Common-EmitterConfigurationThedioderemodelcanbereplacedbytheresistorre.Usethecommon-emittermodelforthecommon-collectorconfiguration.remodelforCEconfigurationInputimpedance:higherthanCBOutputimpedance:lowerthanCBVoltagegain:Voltageamplification,VoandViare180°outofphaseCurrentgain:Currentamplificationremodelrequiresyoutodetermine,re,andro.845.5TheHybridEquivalentModelThefollowinghybridparametersaredevelopedandusedformodelingthetransistor.Theseparameterscanbefoundinaspecificationsheetforatransistor.hi=inputresistancehr=reversetransfervoltageratio(Vi/Vo)0
hf=forwardtransfercurrentratio(Io/Ii)ho=outputconductance
hi=inputresistancehr=reversetransfervoltageratio(Vi/Vo)0
hf=forwardtransfercurrentratio(Io/Ii)ho=outputconductance
SimplifiedGeneralH-ParameterModel:Approximatehybridequivalentmodel85re
Modelvs.h-ParameterModelCommon-EmitterCommon-Base865.6TheHybridpModelThehybridpmodelismostusefulforanalysisofhigh-frequencytransistorapplications.Atlowerfrequenciesthehybridpmodelcloselyapproximatethereparameters,andcanbereplacedbythem.87ACAnalysiswithEquivalentmodelsSection5.8CEwithfix-biasSection5.9CEwithvoltage-dividerbiasSection5.10CEwithemitterbiasSection5.14CEwithdccollectorfeedbackbiasSection5.13CEwithcollectorfeedbackSection5.11CC:EmitterfollowerSection5.12CBACequivalentcircuitwithremodelCalculate:ImpedanceInputimpedanceOutputimpedanceGainVoltagegainCurrentgainDCanalysistodeterminere
AmplificationcircuitACunknownsCE885.8Common-EmitterFixed-BiasConfigurationACnetworkACequivalentwithremodelTheinputisappliedtothebaseTheoutputisfromthecollectorHighinputimpedanceLowoutputimpedanceHighvoltageandcurrentgainPhaseshiftbetweeninputandoutputis18089Common-EmitterFixed-BiasCalculationsCurrentgainfromvoltagegain:Inputimpedance:Outputimpedance:Voltagegain:Currentgain:CEamplifiers:HighinputimpedanceLowoutputimpedanceHighvoltageandcurrentgainPhaseshiftbetweeninputandoutputis180905.9Common-EmitterVoltage-DividerBiasremodelrequiresyoutodetermine,re,andro.Inputimpedance:Outputimpedance:Voltagegain:Currentgainfromvoltagegain:Currentgain:915.10Common-EmitterEmitter-BiasConfiguration
(UnbypassedRE)Inputimpedance:Outputimpedance:Voltagegain:Currentgain:Currentgainfromvoltagegain:92Inputimpedance:Outputimpedance:Voltagegain:Currentgain:Thisisavariationofthecommon-emitterfixed-biasconfigurationInputisappliedtothebaseOutputistakenfromthecollectorThereisa180phaseshiftbetweeninputandoutput5.13Common-EmitterCollectorFeedbackConfiguration935.14CollectorDCFeedbackConfiguration945.11Emitter-FollowerConfiguration(CC)Emitter-followerisalsoknownasthecommon-collectorconfiguration.Theinputisappliedtothebaseandtheoutputistakenfromtheemitter.Thereisnophaseshiftbetweeninputandoutput.Inputimpedance:Outputimpedance:Voltagegain:Currentgain:Currentgainfromvoltagegain:955.12Common-BaseConfigurationTheinputisappliedtotheemitter.Theoutputistakenfromthecollector.Lowinputimpedance.Highoutputimpedance.Currentgainlessthanunity.Veryhighvoltagegain.Nophaseshiftbetweeninputandoutput.Inputimpedance:Outputimpedance:Voltagegain:Currentgain:965.17Two-PortSystemsApproachThisapproach:Reducesacircuittoatwo-portsystemProvidesa“Théveninlook”attheoutputterminalsMakesiteasiertodeterminetheeffectsofachangingloadWithVisetto0V:Thevoltageacrosstheopenterminalsis:whereAvNListheno-loadvoltagegain.
975.16EffectofLoadImpedanceonGainThismodelcanbeappliedtoanycurrent-orvoltage-controlledamplifier.Addingaloadreducesthegainoftheamplifier:985.16EffectofSourceImpedanceonGainThefractionofappliedsignalthatreachestheinputoftheamplifieris:Theinternalresistanceofthesignalsourcereducestheoverallgain:995.16CombinedEffectsofRSandRLonVoltageGainEffectsofRL:EffectsofRLandRS:1005.19CascadedSystemsTheoutputofoneamplifieristheinputtothenextamplifierTheoverallvoltagegainisdeterminedbytheproductofgainsoftheindividualstagesTheDCbiascircuitsareisolatedfromeachotherbythecouplingcapacitorsTheDCcalculationsareindependentofthecascadingTheACcalculationsforgainandimpedanceareinterdependentareloadedgains101R-CCoupledBJTAmplifiersInputimpedance,firststage:Outputimpedance,secondstage:Voltagegain:102CascodeConnection:CE–CBThisexampleisaCE–CBcombination.Thisarrangementprovideshighinputimpedancebutalowvoltagegain.ThelowvoltagegainoftheinputstagereducestheMillerinputcapacitance,makingthiscombinationsuitableforhigh-frequencyapplications.1035.20DarlingtonConnectionTheDarlingtoncircuitprovidesaveryhighcurrentgain—theproductoftheindividualcurrentgains:bD=b1b2Thepracticalsignificanceisthatthecircuitprovidesaveryhighinputimpedance.5.21FeedbackPairThisisatwo-transistorcircuitthatoperateslikeaDarlingtonpair,butitisnotaDarlingtonpair.Ithassimilarcharacteristics:HighcurrentgainLowVoltagegain(nearunity)LowoutputimpedanceHighinputimpedanceThedifferenceisthataDarlingtonusesapairofliketransistors,whereasthefeedback-pairconfigurationusescomplementarytransistors.bD=b1b2PNP1045.22CurrentMirrorCircuitsCurrentmirrorcircuitsprovideconstantcurrentinintegratedcircuits.Currentmirrorcircuitwithhigheroutputimpedance.1055.23CurrentSourceCircuitsConstant-currentsourcescanbebuiltusingFETs,BJTs,andcombinationsofthesedevices.IE
IC106SummaryofChapter5ACanalysisLoadlineanalysisMathematicalanalysisbysmallsignalmodelACanalysismethodbysmallsignalmodelDCanalysistodeterminereACequivalentcircuitbyremodelCalculationimpedanceandgainCEamplifierCBamplifierCCamplifierCascadedamplifiersystemEffectofRsandRLCE-CBChapter6:
Field-EffectTransistorsFETs(Field-EffectTransistors)aremuchlikeBJTs(BipolarJunctionTransistors).Similarities:?Amplifiers ?Switchingdevices ?ImpedancematchingcircuitsDifferences:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年第一季度煙花爆竹安全作業(yè)特種作業(yè)操作證考試試卷(新手實(shí)戰(zhàn)卷)
- 2025年小學(xué)教師資格考試《綜合素質(zhì)》教育創(chuàng)新實(shí)踐題模擬(含答案)
- 可愛的小貓寫物作文12篇
- 2025年網(wǎng)關(guān)項(xiàng)目立項(xiàng)申請報(bào)告模板
- 2025年磨工(技師)考試試卷:磨削加工行業(yè)競爭態(tài)勢分析
- 2025年安全評價(jià)師(初級)安全評價(jià)報(bào)告撰寫試題
- 市場營銷策略實(shí)施成果證明(6篇)
- 2025年文職人員招聘考試公共科目試卷六十三:軍事裝備研發(fā)
- 2025年中學(xué)教師資格考試《綜合素質(zhì)》教育研究方法綜合能力測試試卷(含答案)
- 正式工作證明及職業(yè)背景詳情展示(6篇)
- 礦井調(diào)度員考試題及答案
- 2025年廣西文化和旅游廳所屬事業(yè)單位招聘考試備考題庫
- 土木工程力學(xué)(本)-001-國開機(jī)考復(fù)習(xí)資料
- 2024屆清華大學(xué)強(qiáng)基計(jì)劃數(shù)學(xué)學(xué)科筆試試題(附答案)
- GB/T 9126.1-2023管法蘭用非金屬平墊片第1部分:PN系列
- PLM_項(xiàng)目建議書_PTC
- 1td lte擴(kuò)展型皮基站產(chǎn)品設(shè)計(jì)及應(yīng)用指導(dǎo)
- 電力系統(tǒng)各元件的等值電路和參數(shù)計(jì)算.ppt
- 姿態(tài)動力學(xué)作業(yè)(共9頁)
- 電網(wǎng)公司竣工決算報(bào)告編制規(guī)范與竣工決算資料的要求
- 放飛夢想的舞臺
評論
0/150
提交評論