版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
上海德州中學(xué)高三數(shù)學(xué)理期末試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.某班級(jí)有6名同學(xué)去報(bào)名參加校學(xué)生會(huì)的4項(xiàng)社團(tuán)活動(dòng),若甲、乙兩位同學(xué)不參加同一社團(tuán),每個(gè)社團(tuán)都有人參加,每人只參加一個(gè)社團(tuán),則不同的報(bào)名方案數(shù)為()A.4320 B.2400 C.2160 D.1320參考答案:D【考點(diǎn)】計(jì)數(shù)原理的應(yīng)用.【專題】排列組合.【分析】依題意,分(1,1,1,3);(1,1,2,2)兩組,先分組,后排列,最后求和即可.【解答】解:依題意,6名同學(xué)可分兩組:第一組(1,1,1,3),利用間接法,有?=388,第二組(1,1,2,2),利用間接法,有(﹣)?=932根據(jù)分類計(jì)數(shù)原理,可得388+932=1320種,故選D.【點(diǎn)評(píng)】本題考查排列、組合及簡(jiǎn)單計(jì)數(shù)問(wèn)題,考查分類討論思想與轉(zhuǎn)化思想,考查理解與運(yùn)算能力,屬于中檔題.2.表示不超過(guò)的最大整數(shù),例如[2.9]=2,[-4.1]=-5,已知,,則函數(shù)的零點(diǎn)個(gè)數(shù)是()A.2
B.3
C.4
D.5參考答案:A略3.命題“,”的否定是
(
)A.,
B.,C.,
D.,.參考答案:D4.設(shè)集合M={﹣1,0,1,2},N={x|x2﹣x﹣2<0},則M∩N=()A.{0,1} B.{﹣1,0} C.{1,2} D.{﹣1,2}參考答案:A【考點(diǎn)】交集及其運(yùn)算.【分析】求出N中不等式的解集確定出N,找出M與N的交集即可.【解答】解:由N中的不等式解得:﹣1<x<2,即N=(﹣1,2),∵M(jìn)={﹣1,0,1,2},∴M∩N={0,1}.故選:A5.已知復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)分別為和,則(
)A.
B.
C.
D.參考答案:C6.已知定義域?yàn)榈暮瘮?shù)滿足,當(dāng)時(shí),單調(diào)遞增,若且,則的值(
)A.恒大于0
B.恒小于0
C.可能等于0
D.可正可負(fù)參考答案:B7.在三角形ABC中,設(shè)點(diǎn)滿足,若,
A
B
C
D2參考答案:B8.若將函數(shù)表示為,其中為實(shí)數(shù),則(
).
A.15
B.5
C.
10
D.20參考答案:C略9.函數(shù)在處的導(dǎo)數(shù)等于(
)A.1
B.2
C.3
D.4參考答案:D略10.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是A.36cm3 B.48cm3C.60cm3 D.72cm3參考答案:B由三視圖可知,上面是個(gè)長(zhǎng)為4寬為2的長(zhǎng)方體,下面是一個(gè)發(fā)放倒的四棱柱,高為4,底面是個(gè)梯形,上下底分別為2,6,高為2.所以長(zhǎng)方體的體積為,四棱柱的體積為,所以該幾何體的體積為,選B.二、填空題:本大題共7小題,每小題4分,共28分11.甲、乙兩名學(xué)生選修4門課程(每門課程被選中的機(jī)會(huì)相等),要求每名學(xué)生必須選1門且只需選1門,則他們選修的課程互不相同的概率是
.參考答案:12.二項(xiàng)式(x﹣)6的展開(kāi)式中x4的系數(shù)是
.參考答案:6考點(diǎn):二項(xiàng)式定理.專題:二項(xiàng)式定理.分析:利用二項(xiàng)展開(kāi)式的通項(xiàng)公式求出展開(kāi)式的通項(xiàng);令x的指數(shù)為4,求出展開(kāi)式中x4的系數(shù)解答: 解:展開(kāi)式的通項(xiàng)為Tr+1=,令6﹣r﹣r=4,解得r=1,此時(shí)T2=C61x4=6x4,則展開(kāi)式中x4的系數(shù)是6,故答案為:6點(diǎn)評(píng):本題考查利用二項(xiàng)展開(kāi)式的通項(xiàng)公式解決二項(xiàng)展開(kāi)式的特定項(xiàng)問(wèn)題,求出展開(kāi)式的通項(xiàng)公式是解決本題的關(guān)鍵.13.若變量、滿足約束條件,則的最大值 .參考答案:試題分析:如圖作出約束條件表示的可行域,線段,圓弧圍成的封閉區(qū)域(含邊界),由得,直線的截距越大,則取值越大,作直線,把直線向上平移到與圓弧相切時(shí),取得最大值.考點(diǎn):線性規(guī)劃的應(yīng)用.14.向量,則=
.參考答案:0【考點(diǎn)】9R:平面向量數(shù)量積的運(yùn)算.【分析】根據(jù)條件容易求出,的值,而,從而求出該數(shù)量積的值.【解答】解:;∴=5﹣5=0.故答案為:0.15.已知(1+)2=a+bi(a,bR,i為虛數(shù)單位),則a+b=
▲
.參考答案:16.08年泉州一中適應(yīng)性練習(xí)文)某市有高中三所,A學(xué)校有學(xué)生4000人,B學(xué)校有學(xué)生2000人,C學(xué)校有學(xué)生3000人,現(xiàn)欲通過(guò)分層抽樣的方法抽取900份試卷,調(diào)查學(xué)生對(duì)2008年奧運(yùn)會(huì)關(guān)心的情況,則從A學(xué)校抽取的試卷份數(shù)應(yīng)為_(kāi)___________________________。參考答案:答案:40017.復(fù)數(shù)(其中為虛數(shù)單位)的虛部為 .參考答案:-1/5三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟18.等比數(shù)列中,分別是下表第一、二、三行中的某一個(gè)數(shù),且中的任何兩個(gè)數(shù)不在下表的同一列.
第一列第二列第三列第一行3210第二行6414第三行9818(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)若數(shù)列滿足:,求數(shù)列的前項(xiàng)和.參考答案:20.解:(I)當(dāng)時(shí),不合題意;當(dāng)時(shí),當(dāng)且僅當(dāng)時(shí),符合題意;當(dāng)時(shí),不合題意。因此所以公式q=3,故
(II)因?yàn)樗?9.(本小題滿分12分)如圖,在以AE=2為直徑的半圓周上,B、C,D分別為弧AE的四等分點(diǎn)。(Ⅰ)在弧AE上隨機(jī)取一點(diǎn)P,求滿足在上的投影大于的概率;參考答案:則
………………3分所以使得在上的射影大于的概率………………
5分20.已知遞增等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2和a4的等差中項(xiàng),(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)若,Sn=b1+b2+…+bn,求使Sn+n?2n+1>62成立的正整數(shù)n的最小值.參考答案:【考點(diǎn)】數(shù)列與不等式的綜合;等比數(shù)列的通項(xiàng)公式;數(shù)列的求和.【分析】(I)由題意,得,由此能求出數(shù)列{an}的通項(xiàng)公式.(Ⅱ),Sn=b1+b2+…+bn=﹣(1×2+2×22+…+n×2n),所以數(shù)列{bn}的前項(xiàng)和Sn=2n+1﹣2﹣n?2n+1,使Sn+n?2n+1>62成立的正整數(shù)n的最小值.【解答】解:(I)由題意,得,…解得…由于{an}是遞增數(shù)列,所以a1=2,q=2即數(shù)列{an}的通項(xiàng)公式為an=2?2n﹣1=2n…(Ⅱ)…Sn=b1+b2+…+bn=﹣(1×2+2×22+…+n×2n)①則2Sn=﹣(1×22+2×23+…+n×2n+1)②②﹣①,得Sn=(2+22+…+2n)﹣n?2n+1=2n+1﹣2﹣n?2n+1即數(shù)列{bn}的前項(xiàng)和Sn=2n+1﹣2﹣n?2n+1…則Sn+n?2n+1=2n+1﹣2>62,所以n>5,即n的最小值為6.…21.設(shè)函數(shù)
>1),且的最小值為,若,求的取值范圍。參考答案:解:因?yàn)椋?/p>
………………3分所以,即
………………5分由>1知;
………………6分解不等式得
.
………………10分
22.設(shè)f(x)=|x﹣1|﹣2|x+1|的最大值為m.(Ⅰ)求m;(Ⅱ)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.參考答案:【考點(diǎn)】絕對(duì)值不等式的解法;基本不等式.【分析】(Ⅰ)運(yùn)用零點(diǎn)分區(qū)間,討論x的范圍,去絕對(duì)值,由一次函數(shù)的單調(diào)性可得最大值;(Ⅱ)由a2+2b2+c2=(a2+b2)+(b2+c2),運(yùn)用重要不等式,可得最大值.
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年在線音樂(lè)服務(wù)優(yōu)惠返還規(guī)定
- 2025年在線閱讀服務(wù)合同
- 2025年家庭網(wǎng)絡(luò)智能娛樂(lè)服務(wù)合同
- 2025年創(chuàng)意策劃委托合同
- 二零二五年度木制家具出口業(yè)務(wù)分包勞務(wù)合同4篇
- 2025年度木工職業(yè)培訓(xùn)基地承包合同規(guī)范4篇
- 2025年度木地板施工與室內(nèi)空氣質(zhì)量保障合同4篇
- 二零二五年度儲(chǔ)煤場(chǎng)智能化監(jiān)控與數(shù)據(jù)分析合同4篇
- 二零二五年企業(yè)員工餐補(bǔ)及供餐合作協(xié)議3篇
- 2025年度美發(fā)店員工職業(yè)規(guī)劃勞動(dòng)合同(職業(yè)發(fā)展路徑與支持)
- 《電影之創(chuàng)戰(zhàn)紀(jì)》課件
- 社區(qū)醫(yī)療抗菌藥物分級(jí)管理方案
- 開(kāi)題報(bào)告-鑄牢中華民族共同體意識(shí)的學(xué)校教育研究
- 《醫(yī)院標(biāo)識(shí)牌規(guī)劃設(shè)計(jì)方案》
- 夜市運(yùn)營(yíng)投標(biāo)方案(技術(shù)方案)
- 電接點(diǎn) 水位計(jì)工作原理及故障處理
- 會(huì)議分組討論主持詞
- 動(dòng)火作業(yè)審批表
- 新能源汽車火災(zāi)事故處置程序及方法
- 教育家精神六個(gè)方面專題PPT
- 教學(xué)查房及體格檢查評(píng)分標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論