版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一下數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.執(zhí)行下圖所示的程序框圖,若輸出的,則輸入的x為()A.0 B.1 C.0或1 D.0或e2.下列函數(shù)中,既是偶函數(shù)又在上是單調(diào)遞減的是A. B. C. D.3.某幾何體的三視圖如圖所示(單位:),則該幾何體的體積(單位:)是()A. B. C. D.4.在1和19之間插入個數(shù),使這個數(shù)成等差數(shù)列,若這個數(shù)中第一個為,第個為,當取最小值時,的值是()A.4 B.5 C.6 D.75.三棱錐中,互相垂直,,是線段上一動點,若直線與平面所成角的正切的最大值是,則三棱錐的外接球的表面積是()A. B. C. D.6.若,且,則xy的最大值為()A. B. C. D.7.在等比數(shù)列中,,,則()A.140 B.120 C.100 D.808.若且,則的最小值是()A.6 B.12 C.24 D.169.在區(qū)間上隨機地取一個數(shù).則的值介于0到之間的概率為().A. B. C. D.10.某大學數(shù)學系共有本科生1000人,其中一、二、三、四年級的人數(shù)比為4∶3∶2∶1,要用分層抽樣的方法從所有本科生中抽取一個容量為200的樣本,則應(yīng)抽取三年級的學生人數(shù)為()A.80 B.40 C.60 D.20二、填空題:本大題共6小題,每小題5分,共30分。11.已知等差數(shù)列中,首項,公差,前項和,則使有最小值的_________.12.若圓與圓的公共弦長為,則________.13.已知數(shù)列的前項和為,若,則______.14.已知圓C:,點M的坐標為(2,4),過點N(4,0)作直線交圓C于A,B兩點,則的最小值為________15.不共線的三個平面向量,,兩兩所成的角相等,且,,則__________.16.在中,.以為圓心,2為半徑作圓,線段為該圓的一條直徑,則的最小值為_________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.△ABC在內(nèi)角A、B、C的對邊分別為a,b,c,已知a=bcosC+csinB.(Ⅰ)求B;(Ⅱ)若b=2,求△ABC面積的最大值.18.記為等差數(shù)列的前項和,已知,.(1)求的通項公式;(2)求,并求的最小值.19.在凸四邊形中,.(1)若,,,求的大?。?)若,且,求四邊形的面積.20.在中,內(nèi)角所對的邊分別是.已知,,且.(Ⅰ)求角的大小;(Ⅱ)若,求面積的最大值.21.已知函數(shù).(1)求(x)的最小正周期和單調(diào)遞增區(qū)間;(2)求f(x)在區(qū)間上的最大值和最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)程序框圖,分兩種情況討論,即可求得對應(yīng)的的值.【詳解】當輸出結(jié)果為時.當,則,解得當,則,解得綜上可知,輸入的或故選:C【點睛】本題考查了程序框圖的簡單應(yīng)用,指數(shù)方程與對數(shù)方程的解法,屬于基礎(chǔ)題.2、B【解析】
可先確定奇偶性,再確定單調(diào)性.【詳解】由題意A、B、C三個函數(shù)都是偶函數(shù),D不是偶函數(shù)也不是奇函數(shù),排除D,A中在上不單調(diào),C中在是遞增,只有B中函數(shù)在上遞減.故選B.【點睛】本題考查函數(shù)的奇偶性與單調(diào)性,解題時可分別確定函數(shù)的這兩個性質(zhì).3、B【解析】由三視圖可知,該幾何體是一個棱長為的正方體挖去一個圓錐的組合體,正方體體積為,圓錐體積為幾何體的體積為,故選B.【方法點睛】本題利用空間幾何體的三視圖重點考查學生的空間想象能力和抽象思維能力,屬于難題.三視圖問題是考查學生空間想象能力最常見題型,也是高考熱點.觀察三視圖并將其“翻譯”成直觀圖是解題的關(guān)鍵,不但要注意三視圖的三要素“高平齊,長對正,寬相等”,還要特別注意實線與虛線以及相同圖形的不同位置對幾何體直觀圖的影響.4、B【解析】
設(shè)等差數(shù)列公差為,可得,再利用基本不等式求最值,從而求出答案.【詳解】設(shè)等差數(shù)列公差為,則,從而,此時,故,所以,即,當且僅當,即時取“=”,又,解得,所以,所以,故選:B.【點睛】本題主要考查數(shù)列和不等式的綜合運用,需要學生對所學知識融會貫通,靈活運用.5、B【解析】是線段上一動點,連接,∵互相垂直,∴就是直線與平面所成角,當最短時,即時直線與平面所成角的正切的最大.此時,,在直角△中,.三棱錐擴充為長方體,則長方體的對角線長為,∴三棱錐的外接球的半徑為,∴三棱錐的外接球的表面積為.選B.點睛:空間幾何體與球接、切問題的求解方法(1)求解球與棱柱、棱錐的接、切問題時,一般過球心及接、切點作截面,把空間問題轉(zhuǎn)化為平面圖形與圓的接、切問題,再利用平面幾何知識尋找?guī)缀沃性亻g的關(guān)系求解.(2)若球面上四點構(gòu)成的三條線段兩兩互相垂直,且,一般把有關(guān)元素“補形”成為一個球內(nèi)接長方體,利用求解.6、D【解析】
利用基本不等式可直接求得結(jié)果.【詳解】(當且僅當時取等號)的最大值為故選:【點睛】本題考查利用基本不等式求解積的最大值的問題,屬于基礎(chǔ)題.7、D【解析】
,計算出,然后將,得到答案.【詳解】等比數(shù)列中,又因為,所以,所以,故選D項.【點睛】本題考查等比數(shù)列的基本量計算,屬于簡單題.8、D【解析】試題分析:,當且僅當時等號成立,所以最小值為16考點:均值不等式求最值9、D【解析】
由,得.由函數(shù)的圖像知,使的值介于0到之間的落在和之內(nèi).于是,所求概率為.故答案為D10、B【解析】試題分析:方法一:由條件可知三年級的同學的人數(shù)為,所以應(yīng)抽人數(shù)為,方法二:由條件可知樣本中一、二、三、四年級的人數(shù)比為4∶3∶2∶1,因此應(yīng)抽取三年級的學生人數(shù)為,答案選B.考點:分層抽樣二、填空題:本大題共6小題,每小題5分,共30分。11、或【解析】
求出,然后利用,求出的取值范圍,即可得出使得有最小值的的值.【詳解】,令,解得.因此,當或時,取得最小值.故答案為:或.【點睛】本題考查等差數(shù)列前項和的最小值求解,可以利用二次函數(shù)性質(zhì)求前項和的最小值,也可以轉(zhuǎn)化為數(shù)列所有非正數(shù)項相加,考查計算能力,屬于中等題.12、【解析】將兩個方程兩邊相減可得,即代入可得,則公共弦長為,所以,解之得,應(yīng)填.13、【解析】
利用和的關(guān)系計算得到答案.【詳解】當時,滿足通項公式故答案為【點睛】本題考查了和的關(guān)系,忽略的情況是容易發(fā)生的錯誤.14、8【解析】
先將所求化為M到AB中點的距離的最小值問題,再求得AB中點的軌跡為圓,利用點M到圓心的距離減去半徑求得結(jié)果.【詳解】設(shè)A、B中點為Q,連接QC,則QC,所以Q的軌跡是以NC為直徑的圓,圓心為P(5,0),半徑為1,又,即求點M到P的距離減去半徑,又,所以,故答案為8【點睛】本題考查了向量的加法運算,考查了求圓中弦中點軌跡的幾何方法,考查了點點距公式,考查了分析解決問題的能力,屬于中檔題.15、4【解析】
故答案為:4【點睛】本題主要考查向量的位置關(guān)系,考查向量模的運算的處理方法.由于三個向量兩兩所成的角相等,故它們兩兩的夾角為,由于它們的模都是已知的,故它們兩兩的數(shù)量積也可以求出來,對后平方再開方,就可以計算出最后結(jié)果.16、-10【解析】
向量變形為,化簡得,轉(zhuǎn)化為討論夾角問題求解.【詳解】由題線段為該圓的一條直徑,設(shè)夾角為,可得:,當夾角為時取得最小值-10.故答案為:-10【點睛】此題考查求平面向量數(shù)量積的最小值,關(guān)鍵在于根據(jù)平面向量的運算法則進行變形,結(jié)合線性運算化簡求得,此題也可建立直角坐標系,三角換元設(shè)坐標利用函數(shù)關(guān)系求最值.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)B=(Ⅱ)【解析】
(1)∵a=bcosC+csinB∴由正弦定理知sinA=sinBcosC+sinCsinB①在三角形ABC中,A=-(B+C)∴sinA=sin(B+C)=sinBcosC+cosBsinC②由①和②得sinBsinC=cosBsinC而C∈(0,),∴sinC≠0,∴sinB=cosB又B(0,),∴B=(2)S△ABCacsinBac,由已知及余弦定理得:4=a2+c2﹣2accos2ac﹣2ac,整理得:ac,當且僅當a=c時,等號成立,則△ABC面積的最大值為(2)1.18、(1);(2),.【解析】
(1)先求出公差和首項,可得通項公式;(2)由(1)可得前項和,由二次函數(shù)性質(zhì)可得最小值(只要注意取正整數(shù)).【詳解】(1)設(shè)的公差為,由題意得,,解得,.所以的通項公式為.(2)由(1)得因為所以當或時,取得最小值,最小值為-30.【點睛】本題考查等差數(shù)列的通項公式和前項和公式,方法叫基本量法.19、(1);(2)【解析】
(1)在中利用余弦定理可求得,從而可知,求得;在中利用正弦定理求得結(jié)果;(2)在中利用余弦定理和可表示出;在中利用余弦定理可得,從而構(gòu)造出關(guān)于的方程,結(jié)合和為銳角可求得;根據(jù)化簡求值可得到結(jié)果.【詳解】(1)連接在中,,,由余弦定理得:,則在中,由正弦定理得:,解得:(2)連接在中,由余弦定理得:又在中,由余弦定理得:,即又為銳角,則四邊形面積:【點睛】本題考查解三角形的相關(guān)知識,涉及到正弦定理、余弦定理解三角形、三角形面積公式的應(yīng)用;關(guān)鍵是能夠利用余弦定理構(gòu)造出關(guān)于角的正余弦值的方程,結(jié)合同角三角函數(shù)的平方關(guān)系構(gòu)造方程可求得三角函數(shù)值;易錯點是忽略角的范圍,造成求解錯誤.20、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)先利用向量垂直的坐標表示,得到,再利用正弦定理以及兩角和的正弦公式將,化為,進而得到,由此能求出.(Ⅱ)將兩邊平方,推導出,當且僅當,時取等號,由此求出面積的最大值.【詳解】解析:(Ⅰ)由得,則得,即由于,得,又A為內(nèi)角,因此.(Ⅱ)將兩邊平方,即所以,當且僅當,時取等號.此時,其最大值為.【點睛】本題主要考查數(shù)量積的坐標表示及運算、兩角和的正弦公式應(yīng)用、三角形面積公式的應(yīng)用以及利用基本不等式求最值.21、(1),的增區(qū)間是.(2).【解析】試題分析:(1)利用兩角和正弦公式和降冪公式化簡,得到的形式,利用公式計算周期
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《電力工業(yè)概況》課件
- 小學一年級100以內(nèi)口算題
- 小學三年級多位數(shù)加減法脫式計算練習題
- 銀行績效考核總結(jié)
- 航空航天行業(yè)會計工作總結(jié)
- 《課程TMA系統(tǒng)篇》課件
- 公益機構(gòu)后勤管理工作概述
- 班主任與家校溝通的藝術(shù)與實踐
- 2023-2024學年河南省周口市部分校高三(下)開學地理試卷(2月份)
- 《創(chuàng)新的內(nèi)涵培訓》課件
- 醫(yī)學專家談靈芝孢子粉課件
- 彈性力學19年 吳家龍版學習通超星課后章節(jié)答案期末考試題庫2023年
- 有沒有租學位的協(xié)議書
- 車載智能計算芯片白皮書
- 住宅小區(qū)綠化管理規(guī)定
- 土建工程定額計價之建筑工程定額
- 2022年7月云南省普通高中學業(yè)水平考試物理含答案
- 學校安全工作匯報PPT
- 一年級語文上冊《兩件寶》教案1
- 關(guān)注健康預(yù)防甲流甲型流感病毒知識科普講座課件
- 咨詢公司工作總結(jié)(共5篇)
評論
0/150
提交評論