2023屆豫南九校數(shù)學(xué)高一第二學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第1頁(yè)
2023屆豫南九校數(shù)學(xué)高一第二學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第2頁(yè)
2023屆豫南九校數(shù)學(xué)高一第二學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第3頁(yè)
2023屆豫南九校數(shù)學(xué)高一第二學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第4頁(yè)
2023屆豫南九校數(shù)學(xué)高一第二學(xué)期期末達(dá)標(biāo)檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè)變量,滿(mǎn)足約束條件則目標(biāo)函數(shù)的最小值為()A.4 B.-5 C.-6 D.-82.等比數(shù)列的前項(xiàng)和、前項(xiàng)和、前項(xiàng)和分別為,則().A. B.C. D.3.已知等比數(shù)列中,,,則()A.10 B.7 C.4 D.124.設(shè),則()A. B. C. D.5.已知,,,則的取值范圍是()A. B. C. D.6.在△ABC中,如果,那么cosC等于()A. B. C. D.7.若點(diǎn)在圓外,則a的取值范圍是()A. B. C. D.或8.不等式的解集是()A. B.C.或 D.或9.若直線x+(1+m)y-2=0與直線mx+2y+4=0平行,則m的值是()A.1 B.-2 C.1或-2 D.10.已知數(shù)列(,)具有性質(zhì):對(duì)任意、(),與兩數(shù)中至少有一個(gè)是該數(shù)列中的一項(xiàng),對(duì)于命題:①若數(shù)列具有性質(zhì),則;②若數(shù)列,,()具有性質(zhì),則;下列判斷正確的是()A.①和②均為真命題 B.①和②均為假命題C.①為真命題,②為假命題 D.①為假命題,②為真命題二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)為內(nèi)一點(diǎn),且滿(mǎn)足關(guān)系式,則________.12.已知函數(shù),則的取值范圍是____13.不等式的解集是_______.14.四棱柱中,平面ABCD,平面ABCD是菱形,,,,E是BC的中點(diǎn),則點(diǎn)C到平面的距離等于________.15.已知,,若,則________.16.已知函數(shù)的部分圖象如圖所示,則的單調(diào)增區(qū)間是______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.在中,角,,所對(duì)的邊分別是,,,且.(1)求角;(2)若,求.18.在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓上.(1)求圓的方程;(2)若圓與直線交于,兩點(diǎn),且,求的值.19.如圖,已知是正三角形,EA,CD都垂直于平面ABC,且,,F(xiàn)是BE的中點(diǎn),求證:(1)平面ABC;(2)平面EDB.(3)求幾何體的體積.20.已知四棱錐中,平面,,,,是線段的中點(diǎn).(1)求證:平面;(2)試在線段上確定一點(diǎn),使得平面,并加以證明.21.已知向量,,,設(shè)函數(shù).(1)求的最小正周期;(2)求在上的最大值和最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】繪制不等式組所表示的平面區(qū)域,結(jié)合目標(biāo)函數(shù)的幾何意義可知,目標(biāo)函數(shù)在點(diǎn)處取得最小值.本題選擇D選項(xiàng).2、B【解析】

根據(jù)等比數(shù)列前項(xiàng)和的性質(zhì),可以得到等式,化簡(jiǎn)選出正確答案.【詳解】因?yàn)檫@個(gè)數(shù)列是等比數(shù)列,所以成等比數(shù)列,因此有,故本題選B.【點(diǎn)睛】本題考查了等比數(shù)列前項(xiàng)和的性質(zhì),考查了數(shù)學(xué)運(yùn)算能力.3、C【解析】

由等比數(shù)列性質(zhì)可知,進(jìn)而根據(jù)對(duì)數(shù)的運(yùn)算法則計(jì)算即可【詳解】由題,因?yàn)榈缺葦?shù)列,所以,則,故選:C【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì)的應(yīng)用,考查對(duì)數(shù)的運(yùn)算4、C【解析】

首先化簡(jiǎn),可得到大小關(guān)系,再根據(jù),即可得到的大小關(guān)系.【詳解】,,.所以.故選:C【點(diǎn)睛】本題主要考查指數(shù),對(duì)數(shù)的比較大小,熟練掌握指數(shù)和對(duì)數(shù)函數(shù)的性質(zhì)為解題的關(guān)鍵,屬于簡(jiǎn)單題.5、D【解析】

根據(jù)所給等式,用表示出,代入中化簡(jiǎn),令并構(gòu)造函數(shù),結(jié)合函數(shù)的圖像與性質(zhì)即可求得的取值范圍.【詳解】因?yàn)椋?,由解得,因?yàn)?,所以,則由可得,令,.所以畫(huà)出,的圖像如下圖所示:由圖像可知,函數(shù)在內(nèi)的值域?yàn)椋吹娜≈捣秶鸀?,故選:D.【點(diǎn)睛】本題考查了由等式求整式的取值范圍問(wèn)題,打勾函數(shù)的圖像與性質(zhì)應(yīng)用,注意若使用基本不等式,注意等號(hào)成立條件及自變量取值范圍影響,屬于中檔題.6、D【解析】解:由正弦定理可得;sinA:sinB:sinC=a:b:c=2:3:4可設(shè)a=2k,b=3k,c=4k(k>0)由余弦定理可得,CosC=,選D7、C【解析】

先由表示圓可得,然后將點(diǎn)代入不等式即可解得答案【詳解】由表示圓可得,即因?yàn)辄c(diǎn)在圓外所以,即綜上:a的取值范圍是故選:C【點(diǎn)睛】點(diǎn)與圓的位置關(guān)系(1)在圓外(2)在圓上(3)在圓內(nèi)8、B【解析】

由題意,∴,即,解得,∴該不等式的解集是,故選.9、A【解析】

分類(lèi)討論直線的斜率情況,然后根據(jù)兩直線平行的充要條件求解即可得到所求.【詳解】①當(dāng)時(shí),兩直線分別為和,此時(shí)兩直線相交,不合題意.②當(dāng)時(shí),兩直線的斜率都存在,由直線平行可得,解得.綜上可得.故選A.【點(diǎn)睛】本題考查兩直線平行的等價(jià)條件,解題的關(guān)鍵是將問(wèn)題轉(zhuǎn)化為對(duì)直線斜率存在性的討論.也可利用以下結(jié)論求解:若,則且或且.10、A【解析】

本題是一種重新定義問(wèn)題,要我們理解題目中所給的條件,解決后面的問(wèn)題,把后面的問(wèn)題挨個(gè)驗(yàn)證.【詳解】解:①若數(shù)列具有性質(zhì),取數(shù)列中最大項(xiàng),則與兩數(shù)中至少有一個(gè)是該數(shù)列中的一項(xiàng),而不是該數(shù)列中的項(xiàng),是該數(shù)列中的項(xiàng),又由,;故①正確;②數(shù)列,,具有性質(zhì),,與至少有一個(gè)是該數(shù)列中的一項(xiàng),且,若是該數(shù)列中的一項(xiàng),則,,易知不是該數(shù)列的項(xiàng),.若是該數(shù)列中的一項(xiàng),則或或,a、若同,b、若,則,與矛盾,c、,則,綜上.故②正確.故選:.【點(diǎn)睛】考查數(shù)列的綜合應(yīng)用,此題能很好的考查學(xué)生的應(yīng)用知識(shí)分析、解決問(wèn)題的能力,側(cè)重于對(duì)能力的考查,屬中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由題意將已知中的向量都用為起點(diǎn)來(lái)表示,從而得到32,分別取AB、AC的中點(diǎn)為D、E,可得2,利用平面知識(shí)可得S△AOB與S△AOC及S△BOC與S△ABC的關(guān)系,可得所求.【詳解】∵,∴32,∴2,分別取AB、AC的中點(diǎn)為D、E,∴2,∴S△AOBS△ABFS△ABCS△ABC;S△AOCS△ACFS△ABCS△ABC;S△BOCS△ABC,∴故答案為:.【點(diǎn)睛】本題考查向量的加減法運(yùn)算,體現(xiàn)了數(shù)形結(jié)合思想,解答本題的關(guān)鍵是利用向量關(guān)系畫(huà)出助解圖形.12、【解析】

分類(lèi)討論,去掉絕對(duì)值,利用函數(shù)的單調(diào)性,求得函數(shù)各段上的取值,進(jìn)而得到函數(shù)的取值范圍,得到答案.【詳解】由題意,當(dāng)時(shí),函數(shù),此時(shí)函數(shù)為單調(diào)遞減函數(shù),所以最大值為,此時(shí)函數(shù)的取值當(dāng)時(shí),函數(shù),此時(shí)函數(shù)為單調(diào)遞減函數(shù),所以最大值為,最小值,所以函數(shù)的取值為當(dāng)時(shí),函數(shù),此時(shí)函數(shù)為單調(diào)遞增函數(shù),所以最大值為,此時(shí)函數(shù)的取值,綜上可知,函數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查了分段函數(shù)的值域問(wèn)題,其中解答中合理分類(lèi)討論去掉絕對(duì)值,利用函數(shù)的單調(diào)性求得各段上的值域是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.13、【解析】

且,然后解一元二次不等式可得解集.【詳解】解:,∴且,或,不等式的解集為,故答案為:.【點(diǎn)睛】本題主要考查分式不等式的解法,關(guān)鍵是將分式不等式轉(zhuǎn)化為其等價(jià)形式,屬于基礎(chǔ)題.14、【解析】

利用等體法即可求解.【詳解】如圖,由ABCD是菱形,,,E是BC的中點(diǎn),所以,又平面ABCD,所以平面ABCD,即,又,則平面,由平面,所以,所以,設(shè)點(diǎn)C到平面的距離為,由即,即,所以.故答案為:【點(diǎn)睛】本題考查了等體法求點(diǎn)到面的距離,同時(shí)考查了線面垂直的判定定理,屬于基礎(chǔ)題.15、【解析】

先算出的坐標(biāo),然后利用即可求出【詳解】因?yàn)?,所以因?yàn)椋约?,解得故答案為:【點(diǎn)睛】本題考查的是向量在坐標(biāo)形式下的相關(guān)計(jì)算,較簡(jiǎn)單.16、(區(qū)間端點(diǎn)開(kāi)閉均可)【解析】

由已知函數(shù)圖象求得,進(jìn)一步得到,再由五點(diǎn)作圖的第二點(diǎn)求得,則得到函數(shù)的解析式,然后利用復(fù)合函數(shù)的單調(diào)性求出的單調(diào)增區(qū)間.【詳解】由圖可知,,則,.又,.則.由,,解得,.的單調(diào)增區(qū)間是.【點(diǎn)睛】本題主要考查由函數(shù)的部分圖象求函數(shù)解析式以及復(fù)合函數(shù)單調(diào)區(qū)間的求法.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2).【解析】

(1)利用正弦定理化簡(jiǎn)即得;(2)由正弦定理得,再結(jié)合余弦定理可得.【詳解】解:(1)由正弦定理得:,又,,得.(2)由正弦定理得:,又由余弦定理:,代入,可得.【點(diǎn)睛】本題主要考查正弦定理余弦定理解三角形,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.18、(1);(2).【解析】分析:(1)因?yàn)榍€與坐標(biāo)軸的交點(diǎn)都在圓上,所以要求圓的方程應(yīng)求曲線與坐標(biāo)軸的三個(gè)交點(diǎn).曲線與軸的交點(diǎn)為,與軸的交點(diǎn)為.由與軸的交點(diǎn)為關(guān)于點(diǎn)(3,0)對(duì)稱(chēng),故可設(shè)圓的圓心為,由兩點(diǎn)間距離公式可得,解得.進(jìn)而可求得圓的半徑為,然后可求圓的方程為.(2)設(shè),,由可得,進(jìn)而可得,減少變量個(gè)數(shù).因?yàn)?,,所以.要求值,故將直線與圓的方程聯(lián)立可得,消去,得方程.因?yàn)橹本€與圓有兩個(gè)交點(diǎn),故判別式,由根與系數(shù)的關(guān)系可得,.代入,化簡(jiǎn)可求得,滿(mǎn)足,故.詳解:(1)曲線與軸的交點(diǎn)為,與軸的交點(diǎn)為.故可設(shè)的圓心為,則有,解得.則圓的半徑為,所以圓的方程為.(2)設(shè),,其坐標(biāo)滿(mǎn)足方程組消去,得方程.由已知可得,判別式,且,.由于,可得.又,所以.由得,滿(mǎn)足,故.點(diǎn)睛:⑴求圓的方程一般有兩種方法:①待定系數(shù)法:如條件和圓心或半徑有關(guān),可設(shè)圓的方程為標(biāo)準(zhǔn)方程,再代入條件可求方程;如已知圓過(guò)兩點(diǎn)或三點(diǎn),可設(shè)圓的方程為一般方程,再根據(jù)條件求方程;②幾何方法:利用圓的性質(zhì),如圓的弦的垂直平分線經(jīng)過(guò)圓心,最長(zhǎng)的弦為直徑,圓心到切線的距離等于半徑.(2)直線與圓或圓錐曲線交于,兩點(diǎn),若,應(yīng)設(shè),,可得.可將直線與圓或圓錐曲線的方程聯(lián)立消去,得關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系得兩根和與兩根積,代入,化簡(jiǎn)求值.19、(1)見(jiàn)解析(2)見(jiàn)解析(3)【解析】

(1)如圖:證明得到答案.(2)證明得到答案.(3)幾何體轉(zhuǎn)化為,利用體積公式得到答案.【詳解】(1)∵F分別是BE的中點(diǎn),取BA的中點(diǎn)M,∴FM∥EA,F(xiàn)MEA=1∵EA、CD都垂直于平面ABC,∴CD∥EA,∴CD∥FM,又CD=FM∴四邊形FMCD是平行四邊形,∴FD∥MC,F(xiàn)D?平面ABC,MC?平面ABC∴FD∥平面ABC.(2)因M是AB的中點(diǎn),△ABC是正三角形,所以CM⊥AB又EA垂直于平面ABC∴CM⊥AE,又AE∩AB=A,所以CM⊥面EAB,∵AF?面EAB∴CM⊥AF,又CM∥FD,從而FD⊥AF,因F是BE的中點(diǎn),EA=AB所以AF⊥EB.EB,F(xiàn)D是平面EDB內(nèi)兩條相交直線,所以AF⊥平面EDB.(3)幾何體的體積等于為中點(diǎn),連接平面【點(diǎn)睛】本題考查了線面平行,線面垂直,等體積法,意在考查學(xué)生的空間想象能力和計(jì)算能力.20、(1)見(jiàn)解析(2)存在線段上的中點(diǎn),使平面,詳見(jiàn)解析【解析】

(1)利用條件判斷CM與PA、AB垂直,由直線與平面垂直的判定定理可證.(2)取PB的中點(diǎn)Q,PA的中點(diǎn)F,判斷四邊形CQFD為平行四邊形,利用直線與平面平行的判定定理可證;或取PB中點(diǎn)Q,證明平面CQM與平面DAP平行,再利用兩平面平行的性質(zhì)可證.【詳解】解:(1)∵,∴是等邊三角形,∴,又∵平面,平面,∴,又∵,∴平面;(2)取線段的中點(diǎn),線段的中點(diǎn),連結(jié),∴,∵

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論