![圖像分割與邊緣檢測(cè)_第1頁](http://file4.renrendoc.com/view/c6b90f19e345a97448d4c5c988863540/c6b90f19e345a97448d4c5c9888635401.gif)
![圖像分割與邊緣檢測(cè)_第2頁](http://file4.renrendoc.com/view/c6b90f19e345a97448d4c5c988863540/c6b90f19e345a97448d4c5c9888635402.gif)
![圖像分割與邊緣檢測(cè)_第3頁](http://file4.renrendoc.com/view/c6b90f19e345a97448d4c5c988863540/c6b90f19e345a97448d4c5c9888635403.gif)
![圖像分割與邊緣檢測(cè)_第4頁](http://file4.renrendoc.com/view/c6b90f19e345a97448d4c5c988863540/c6b90f19e345a97448d4c5c9888635404.gif)
![圖像分割與邊緣檢測(cè)_第5頁](http://file4.renrendoc.com/view/c6b90f19e345a97448d4c5c988863540/c6b90f19e345a97448d4c5c9888635405.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
圖像分割與邊緣檢測(cè)第1頁,課件共130頁,創(chuàng)作于2023年2月
5.1閾值分割
5.1.1概述
閾值化是最常用一種圖像分割技術(shù),其特點(diǎn)是操作簡(jiǎn)單,分割結(jié)果是一系列連續(xù)區(qū)域?;叶葓D像的閾值分割一般基于如下假設(shè):圖像目標(biāo)或背景內(nèi)部的相鄰像素間的灰度值是高度相關(guān)的,目標(biāo)與背景之間的邊界兩側(cè)像素的灰度值差別很大,圖像目標(biāo)與背景的灰度分布都是單峰的。如要圖像目標(biāo)與背景對(duì)應(yīng)的兩個(gè)單峰大小接近、方差較小且均值相差較大,則該圖像的直方圖具有雙峰性質(zhì)。閾值化??梢杂行Х指罹哂须p峰性質(zhì)的圖像。第2頁,課件共130頁,創(chuàng)作于2023年2月閾值分割過程如下:首先確定一個(gè)閾值T,對(duì)于圖像中的每個(gè)像素,若其灰度值大于T,則將其置為目標(biāo)點(diǎn)(值為1),否則置為背景點(diǎn)(值為0),或者相反,從而將圖像分為目標(biāo)區(qū)域與背景區(qū)域。用公式可表示為(5-1)第3頁,課件共130頁,創(chuàng)作于2023年2月在編程實(shí)現(xiàn)時(shí),也可以將目標(biāo)像素置為255,背景像素置為0,或者相反。當(dāng)圖像中含有多個(gè)目標(biāo)且灰度差別較大時(shí),可以設(shè)置多個(gè)閾值實(shí)現(xiàn)多閾值分割。多閾值分割可表示為(5-2)式中:Tk為一系列分割閾值;k為賦予每個(gè)目標(biāo)區(qū)域的標(biāo)號(hào);m為分割后的目標(biāo)區(qū)域數(shù)減1。第4頁,課件共130頁,創(chuàng)作于2023年2月閾值分割的關(guān)鍵是如何確定適合的閾值,不同的閾值其處理結(jié)果差異很大,會(huì)影響特征測(cè)量與分析等后續(xù)過程。如圖5-1所示,閾值過大,會(huì)過多地把背景像素錯(cuò)分為目標(biāo);而閾值過小,又會(huì)過多地把目標(biāo)像素錯(cuò)分為背景。確定閾值的方法有多種,可分為不同類型。如果選取的閾值僅與各個(gè)像素的灰度有關(guān),則稱其為全局閾值。如果選取的閾值與像素本身及其局部性質(zhì)(如鄰域的平均灰度值)有關(guān),則稱其為局部閾值。如果選取的閾值不僅與局部性質(zhì)有關(guān),還與像素的位置有關(guān),則稱其為動(dòng)態(tài)閾值或自適應(yīng)閾值。閾值一般可用下式表示:
T=T[x,y,f(x,y),p(x,y)](5-3)
式中:f(x,y)是點(diǎn)(x,y)處的像素灰度值:p(x,y)是該像素鄰域的某種局部性質(zhì)。第5頁,課件共130頁,創(chuàng)作于2023年2月圖5-1不同閾值對(duì)圖像分割的影響第6頁,課件共130頁,創(chuàng)作于2023年2月當(dāng)圖像目標(biāo)和背景之間灰度對(duì)比較強(qiáng)時(shí),閾值選取較為容易。實(shí)際上,由于不良的光照條件或過多的圖像噪聲的影響,目標(biāo)與背景之間的對(duì)比往往不夠明顯,此時(shí)閾值選取并不容易。一般需要對(duì)圖像進(jìn)行預(yù)處理,如圖像平滑去噪,再確定閾值進(jìn)行分割。
5.1.2全局閾值
當(dāng)圖像目標(biāo)與背景之間具有高對(duì)比度時(shí),利用全局閾值可以成功地分割圖像。如圖5-2(a)所示,點(diǎn)狀目標(biāo)與背景之間具有鮮明的對(duì)比,如圖5-2(b)所示的直方圖表現(xiàn)出雙峰性質(zhì),左側(cè)峰對(duì)應(yīng)較暗的目標(biāo),右側(cè)峰對(duì)應(yīng)較亮的背景,雙峰之間的波谷對(duì)應(yīng)目標(biāo)與背景之間的邊界。當(dāng)選擇雙峰之間的谷底點(diǎn)對(duì)應(yīng)的灰度值作為閾值時(shí),便可以很好地將目標(biāo)從背景中分離出來。圖5-2(c)是用閾值124分割的結(jié)果。第7頁,課件共130頁,創(chuàng)作于2023年2月圖5-2直方圖具有雙峰性質(zhì)的閾值分割第8頁,課件共130頁,創(chuàng)作于2023年2月確定全局閾值的方法很多,如極小點(diǎn)閾值法、迭代閾值法、最優(yōu)閾值法、Otsu閾值法、最大熵法、p參數(shù)法等。當(dāng)具有明顯的雙峰性質(zhì)時(shí),可直接從直方圖的波谷處選取一
個(gè)閾值,也可以根據(jù)某個(gè)準(zhǔn)則自動(dòng)計(jì)算出閾值。實(shí)際使用時(shí),可根據(jù)圖像特點(diǎn)確定合適的閾值方法,一般需要用幾種方法進(jìn)行對(duì)比試驗(yàn),以確定分割效果最好的閾值。第9頁,課件共130頁,創(chuàng)作于2023年2月
1.極小點(diǎn)閾值法
如果將直方圖的包絡(luò)線看做一條曲線,則通過求取曲線極小值的方法可以找到直方圖的谷底點(diǎn),并將其作為分割閾值。設(shè)p(z)代表直方圖,那么極小點(diǎn)應(yīng)滿足:
p′(z)=0且p″(z)>0(5-4)
若在求極小值點(diǎn)之前對(duì)直方圖進(jìn)行平滑處理,則效果會(huì)更好。例如3點(diǎn)平滑,平滑后的灰度級(jí)i的相對(duì)頻數(shù)用灰度級(jí)i-1,i,i+1的相對(duì)頻數(shù)的平均值代替。第10頁,課件共130頁,創(chuàng)作于2023年2月
2.迭代閾值法
迭代閾值算法如下:
(1)選擇一個(gè)初始閾值T1。
(2)根據(jù)閾值T1將圖像分割為G1和G2兩部分。G1包含所有小于等于T1的像素,G2包含所有大于T1的像素。分別求出G1和G2的平均灰度值μ1和μ2。
(3)計(jì)算新的閾值T2=(μ1+μ2)/2。
(4)如果|T2-T1|≤T0(T0為預(yù)先指定的很小的正數(shù)),即迭代過程中前后兩次閾值很接近時(shí),終止迭代,否則T1=T2,重復(fù)(2)和(3)。最后的T2就是所求的閾值。第11頁,課件共130頁,創(chuàng)作于2023年2月設(shè)定常數(shù)T0的目的是為了加快迭代速度,如果不關(guān)心迭代速度,則可以設(shè)置為0。當(dāng)目標(biāo)與背景的面積相當(dāng)時(shí),可以將初始閾值T1置為整幅圖像的平均灰度。當(dāng)目標(biāo)與背景的面積相差較大時(shí),更好的選擇是將初始閾值T1置為最大灰度值與最小灰度值的中間值。
3.最優(yōu)閾值法
由于目標(biāo)與背景的灰度值往往有部分相同,因而用一個(gè)全局閾值并不能準(zhǔn)確地把它們絕然分開,總會(huì)出現(xiàn)分割誤差。一部分目標(biāo)像素被錯(cuò)分為背景,一部分背景像素被錯(cuò)分為目標(biāo)。最優(yōu)閾值法的基本思想就是選擇一個(gè)閾值,使得總的分類誤差概率最小。第12頁,課件共130頁,創(chuàng)作于2023年2月假定圖像中僅包含兩類主要的灰度區(qū)域(目標(biāo)和背景),z代表灰度值,則z可看做一個(gè)隨機(jī)變量,直方圖看做是對(duì)灰度概率密度函數(shù)p(z)的估計(jì)。p(z)實(shí)際上是目標(biāo)和背景兩個(gè)概率密度函數(shù)之和。設(shè)p1(z)和p2(z)分別表示背景與目標(biāo)的概率密度函數(shù),P1和P2分別表示背景像素與目標(biāo)像素出現(xiàn)的概率(P1+P2=1)?;旌细怕拭芏群瘮?shù)p(z)為(5-5)第13頁,課件共130頁,創(chuàng)作于2023年2月如圖5-3所示,如果設(shè)置一個(gè)閾值T,使得灰度值小于T的像素分為背景,而使得大于T的像素分為目標(biāo),則把目標(biāo)像素分割為背景的誤差概率E1(T)為(5-6)把背景像素分割為目標(biāo)的誤差概率E2(T)為(5-7)第14頁,課件共130頁,創(chuàng)作于2023年2月圖5-3灰度概率密度函數(shù)第15頁,課件共130頁,創(chuàng)作于2023年2月總的誤差概率E(T)為(5-8)為了求出使總的誤差概率最小的閾值T,可將E(T)對(duì)T求導(dǎo)并使其導(dǎo)數(shù)為0,可得(5-9)第16頁,課件共130頁,創(chuàng)作于2023年2月由式(5-9)可以看出,當(dāng)P1=P2時(shí),灰度概率密度函數(shù)p1(z)與p2(z)的交點(diǎn)對(duì)應(yīng)的灰度值就是所求的最優(yōu)閾值T。在用式(5-9)求解最優(yōu)閾值時(shí),不僅需要知道目標(biāo)與背景像素的出現(xiàn)概率P1和P2,還要知道兩者的概率密度函數(shù)p1(z)與p2(z)。然而,這些數(shù)據(jù)往往未知,需要進(jìn)行估計(jì)。實(shí)際上,對(duì)概率密度函數(shù)進(jìn)行估計(jì)并不容易,這也正是最優(yōu)閾值法的缺點(diǎn)。一般假設(shè)目標(biāo)與背景的灰度均服從高斯分布,可以簡(jiǎn)化估計(jì)。此時(shí),p(z)為第17頁,課件共130頁,創(chuàng)作于2023年2月(5-10)式中:μ1和μ2分別是目標(biāo)與背景的平均灰度值;σ1和σ2分別是兩者的標(biāo)準(zhǔn)方差。將上式代入式(5-9)可得(5-11)第18頁,課件共130頁,創(chuàng)作于2023年2月A、B、C分別為(5-12)式(5-11)一般有兩個(gè)解,需要在兩個(gè)解中確定最優(yōu)閾值。若σ1=σ2=σ,則只有一個(gè)最優(yōu)閾值:(5-13)第19頁,課件共130頁,創(chuàng)作于2023年2月若目標(biāo)與背景像素出現(xiàn)的概率相等,則目標(biāo)的平均灰度與背景的平均灰度的中值就是所求的最優(yōu)閾值。利用最小均方誤差法從直方圖h(zi)中可以估計(jì)圖像的混合概率密度函數(shù):(5-14)最小化上式一般需要數(shù)值求解,例如用共軛梯度法或牛頓法。第20頁,課件共130頁,創(chuàng)作于2023年2月
4.Otsu法
Otsu法是閾值化中常用的自動(dòng)確定閾值的方法之一。Otsu法確定最佳閾值的準(zhǔn)則是使閾值分割后各個(gè)像素類的類內(nèi)方差最小。另一種確定閾值的準(zhǔn)則是使得閾值分割后的像素類的類間方差最大。這兩種準(zhǔn)則是等價(jià)的,因?yàn)轭愰g方差與類內(nèi)方差之和即整幅圖像的方差,是一個(gè)常數(shù)。分割的目的就是要使類別之間的差別最大,類內(nèi)之間的差別最小。第21頁,課件共130頁,創(chuàng)作于2023年2月設(shè)圖像總像素?cái)?shù)為N,灰度級(jí)總數(shù)為L(zhǎng),灰度值為i的像素?cái)?shù)為Ni。令ω(k)和μ(k)分別表示從灰度級(jí)0到灰度級(jí)k的像素的出現(xiàn)概率和平均灰度,分別表示為(5-15)(5-16)由此可見,所有像素的總概率為ω(L-1)=1,圖像的平均灰度為μT=μ(L-1)。第22頁,課件共130頁,創(chuàng)作于2023年2月設(shè)有M-1個(gè)閾值(0≤t1<t2<…<tM-1≤L-1),將圖像分成M個(gè)像素類Cj(Cj∈[tj-1+1,…,tj];j=1,2,…,M;t0=0,tM=L-1),則Cj的出現(xiàn)概率ωj、平均灰度μj和方差σj2為(5-17)(5-18)(5-19)第23頁,課件共130頁,創(chuàng)作于2023年2月由此可得類內(nèi)方差為(5-20)各類的類間方差為(5-21)將使式(5-20)最小或使式(5-21)最大的閾值組(t1,t2,…,tM-1)作為M閾值化的最佳閾值組。若取M為2,即分割成2類,則可用上述方法求出二值化的最佳閾值。第24頁,課件共130頁,創(chuàng)作于2023年2月
5.p參數(shù)法
p參數(shù)法的基本思想是選取一個(gè)閾值T,使得目標(biāo)面積在圖像中占的比例為p,背景所占的比例為1-p。p參數(shù)法僅適用于事先已知目標(biāo)所占全圖像百分比的場(chǎng)合。第25頁,課件共130頁,創(chuàng)作于2023年2月5.1.3局部閾值
當(dāng)圖像目標(biāo)與背景在直方圖上對(duì)應(yīng)的兩個(gè)波峰陡峭、對(duì)稱且雙峰之間有較深的波谷或雙峰相距很遠(yuǎn)時(shí),利用前面介紹的全局閾值方法可以確定具有較好分割效果的閾值。但是,由于圖像噪聲等因素的影響,會(huì)使得圖像直方圖雙峰之間的波谷被填充或者雙峰相距很近。另外,當(dāng)圖像目標(biāo)與背景面積差別很大時(shí),在直方圖上的表現(xiàn)就是較小的一方被另一方淹沒。上面這兩種情況都使得本應(yīng)具有雙峰性質(zhì)的圖像基本上變成了單峰,難以檢測(cè)到雙峰之間的波谷。為解決這個(gè)問題,除了利用像素自身的性質(zhì)外,還可以借助像素鄰域的局部性質(zhì)(如像素的梯度值與拉普拉斯值)來確定閾值,這就是局部閾值。常用的兩種局部閾值方法有直方圖變換法和散射圖法。第26頁,課件共130頁,創(chuàng)作于2023年2月
1.直方圖變換法
直方圖變換法利用像素的某種局部性質(zhì),將原來的直方圖變換成具有更深波谷的直方圖,或者使波谷變換成波峰,使得谷點(diǎn)或峰點(diǎn)更易檢測(cè)到。由微分算子的性質(zhì)可以推知,目標(biāo)與背景內(nèi)部像素的梯度小,而目標(biāo)與背景之間的邊界像素的梯度大。于是,可以根據(jù)像素的梯度值或灰度級(jí)的平均梯度作出一個(gè)加權(quán)直方圖。例如,可以作出僅具有低梯度值像素的直方圖,即對(duì)梯度大的像素賦予權(quán)值0,而梯度小的像素賦予權(quán)值1。第27頁,課件共130頁,創(chuàng)作于2023年2月這樣,新直方圖中對(duì)應(yīng)的波峰基本不變,但因?yàn)闇p少了邊界點(diǎn),所以波谷應(yīng)比原直方圖更深。也可賦予相反的權(quán)值,作出僅具有高梯度值的像素的直方圖,它的一個(gè)峰主要由邊界像素構(gòu)成,對(duì)應(yīng)峰的灰度級(jí)可作為分割閾值。圖5-4(a)是圖5-2(a)的直方圖;圖5-4(b)是原直方圖除以對(duì)應(yīng)灰度級(jí)的平均梯度得到的新的直方圖,可見波谷更深、波峰更高。利用Otsu法由新直方圖求得新的最佳閾值為132,圖5-4(c)是新的分割結(jié)果。第28頁,課件共130頁,創(chuàng)作于2023年2月圖5-4灰度級(jí)平均梯度變換直方圖及分割結(jié)果第29頁,課件共130頁,創(chuàng)作于2023年2月
2.散射圖法
散射圖也可看做是一個(gè)二維直方圖,其橫軸表示灰度值,縱軸表示某種局部性質(zhì)(如梯度),圖中各點(diǎn)的數(shù)值是同時(shí)具有某個(gè)灰度值與梯度值的像素個(gè)數(shù)。
圖5-5(b)是對(duì)圖5-5(a)作出的灰度和梯度散射圖的一部分,只取實(shí)際散射圖左下角128×32大小的區(qū)域并放大3
倍,其它部分均為黑色。散射圖中某點(diǎn)的顏色越亮,表示圖像中同時(shí)具有與該點(diǎn)坐標(biāo)對(duì)應(yīng)的灰度值和梯度值的像素越多。第30頁,課件共130頁,創(chuàng)作于2023年2月圖5-5圖像的灰度和梯度散射圖第31頁,課件共130頁,創(chuàng)作于2023年2月由圖可見,散射圖中有兩個(gè)接近橫軸且沿橫軸相互分開的較大的亮色聚類,分別對(duì)應(yīng)目標(biāo)與背景的內(nèi)部像素。離橫軸稍遠(yuǎn)的地方有一些較暗的點(diǎn),位于兩個(gè)亮色聚類之間,它們對(duì)應(yīng)目標(biāo)與背景邊界上的像素點(diǎn)。如果圖像中存在噪聲,則它們?cè)谏⑸鋱D中位于離橫軸較遠(yuǎn)的地方。如果在散射圖中將兩個(gè)聚類分開,根據(jù)每個(gè)聚類的灰度值和梯度值就可以實(shí)現(xiàn)圖像的分割。
散射圖中,聚類的形狀與圖像像素的相關(guān)程度有關(guān)。如果目標(biāo)與背景內(nèi)部的像素都有較強(qiáng)的相關(guān)性,則各個(gè)聚類會(huì)很集中,且接近橫軸,否則會(huì)遠(yuǎn)離橫軸。第32頁,課件共130頁,創(chuàng)作于2023年2月5.1.4動(dòng)態(tài)閾值
在許多情況下,由于光照不均勻等因素的影響,圖像背景的灰度值并不恒定,目標(biāo)與背景的對(duì)比度在圖像中也會(huì)有變化,圖像中還可能存在不同的陰影。如果只使用單一的全局閾值對(duì)整幅圖像進(jìn)行分割,則某些區(qū)域的分割效果好,而另外一些區(qū)域的分割效果可能很差。解決方法之一就是使閾值隨圖像中的位置緩慢變化,可以將整幅圖像分解成一系列子圖像,對(duì)不同的子圖像使用不同的閾值進(jìn)行分割。這種與像素坐標(biāo)有關(guān)的閾值就稱為動(dòng)態(tài)閾值或自適應(yīng)閾值。子圖像之間可以部分重疊,也可以只相鄰。第33頁,課件共130頁,創(chuàng)作于2023年2月圖像分解之后,如果子圖像足夠小,則受光照等因素的影響就會(huì)較小,背景灰度也更均勻,目標(biāo)與背景的對(duì)比度也更一致。此時(shí)可選用前面介紹的全局閾值方法來確定各個(gè)子圖像的閾值。
圖5-6(a)中各圓形目標(biāo)與背景的對(duì)比度并不一致,左上角的目標(biāo)與背景的對(duì)比度很小。圖(b)為用Otsu法全局閾值化的結(jié)果,可見左上角的圓形目標(biāo)沒有被檢測(cè)出來。圖(c)用分區(qū)網(wǎng)格,它把原始圖像均勻地分解為16幅子圖像。對(duì)每幅子圖像單獨(dú)使用Otsu閾值法進(jìn)行分割,分割結(jié)果如圖(d)所示。由圖可見,左上角的目標(biāo)被清晰地從背景中分離出來。第34頁,課件共130頁,創(chuàng)作于2023年2月圖5-6自適應(yīng)閾值分割第35頁,課件共130頁,創(chuàng)作于2023年2月下面簡(jiǎn)要介紹一種動(dòng)態(tài)閾值方法,其基本步驟如下:
(1)將整幅圖像分解成一系列相互之間有50%重疊的子圖像。
(2)檢測(cè)各子圖像的直方圖是否具有雙峰性質(zhì)。如果是,則采用最優(yōu)閾值法確定該子圖像
的閾值,否則不進(jìn)行處理。
(3)根據(jù)已得到的部分子圖像的閾值,插值得到其它不具備雙峰性質(zhì)的子圖像的閾值。
(4)根據(jù)各子圖像的閾值插值得到所有像素的閾值。對(duì)于每個(gè)像素,如果其灰度值大于該點(diǎn)處的閾值,則分為目標(biāo)像素,否則分為背景像素。第36頁,課件共130頁,創(chuàng)作于2023年2月
5.2基于區(qū)域的分割
5.2.1區(qū)域生長(zhǎng)
區(qū)域生長(zhǎng)的基本思想是把具有相似性質(zhì)的像素集合起來構(gòu)成區(qū)域。首先對(duì)每個(gè)要分割的區(qū)域找出一個(gè)種子像素作為生長(zhǎng)的起點(diǎn),然后將種子像素鄰域中與種子像素有相同或相似性質(zhì)的像素合并到種子像素所在的區(qū)域中。將這些新像素當(dāng)作新的種子像素繼續(xù)上面的過程,直到?jīng)]有可接受的鄰域像素時(shí)停止生長(zhǎng)。
圖5-7為區(qū)域生長(zhǎng)的一個(gè)示例。圖5-7(a)為待分割的圖像,已知有1個(gè)種子像素(標(biāo)有下劃線),相似性準(zhǔn)則是鄰近像素與種子像素的灰度值差小于3。圖5-7(b)、(c)分別是第一步、第二步接受的像素,圖5-7(d)是最后的生長(zhǎng)結(jié)果。第37頁,課件共130頁,創(chuàng)作于2023年2月圖5-7區(qū)域生長(zhǎng)示例第38頁,課件共130頁,創(chuàng)作于2023年2月區(qū)域生長(zhǎng)法需要選擇一組能正確代表所需區(qū)域的種子像素,確定在生長(zhǎng)過程中的相似性準(zhǔn)則,制定讓生長(zhǎng)停止的條件或準(zhǔn)則。相似性準(zhǔn)則可以是灰度級(jí)、彩色、紋理、梯度等特性。選取的種子像素可以是單個(gè)像素,也可以是包含若干個(gè)像素的小區(qū)域。種子像素的選取一般需要先驗(yàn)知識(shí),若沒有則可借助生長(zhǎng)準(zhǔn)則對(duì)每個(gè)像素進(jìn)行相應(yīng)計(jì)算。如果計(jì)算結(jié)果出現(xiàn)聚類,則接近聚類中心的像素可取為種子像素。生長(zhǎng)準(zhǔn)則有時(shí)還需要考慮像素間的連通性,否則會(huì)出現(xiàn)無意義的分割結(jié)果。第39頁,課件共130頁,創(chuàng)作于2023年2月5.2.2區(qū)域分裂與合并
上面介紹的區(qū)域生長(zhǎng)法需要根據(jù)先驗(yàn)知識(shí)選取種子像素。當(dāng)沒有先驗(yàn)知識(shí)時(shí),區(qū)域生長(zhǎng)法就存在困難。區(qū)域分裂與合并的核心思想是將圖像分成若干個(gè)子區(qū)域,對(duì)于任意一個(gè)子區(qū)域,如果不滿足某種一致性準(zhǔn)則(一般用灰度均值和方差來度量),則將其繼續(xù)分裂成若干個(gè)子區(qū)域,否則該子區(qū)域不再分裂。如果相鄰的兩個(gè)子區(qū)域滿足某個(gè)相似性準(zhǔn)則,則合并為一個(gè)區(qū)域。直到?jīng)]有可以分裂和合并的子區(qū)域?yàn)橹?。通常基于如圖5-8所示的四叉樹來表示區(qū)域分裂與合并,每次將不滿足一致性準(zhǔn)則的區(qū)域分裂為四個(gè)大小相等且互不重疊的子區(qū)域。第40頁,課件共130頁,創(chuàng)作于2023年2月圖5-8區(qū)域分裂與合并的四叉樹表示第41頁,課件共130頁,創(chuàng)作于2023年2月下面以一個(gè)簡(jiǎn)單的例子來說明區(qū)域分裂與合并的過程。假設(shè)分裂時(shí)的一致性準(zhǔn)則為:如果某個(gè)子區(qū)域的灰度均方差大于1.5,則將其分裂為4個(gè)子區(qū)域,否則不分裂。合并時(shí)的相似性準(zhǔn)則為:若相鄰兩個(gè)子區(qū)域的灰度均值之差不大于2.5,則合并為一個(gè)區(qū)域。現(xiàn)對(duì)圖5-7(a)進(jìn)行區(qū)域分裂與合并,結(jié)果如圖5-9所示。第42頁,課件共130頁,創(chuàng)作于2023年2月圖5-9區(qū)域分裂與合并示例第43頁,課件共130頁,創(chuàng)作于2023年2月首先計(jì)算出全圖的灰度均方差為σR=2.65,不滿足一致性準(zhǔn)則,需分裂為四個(gè)子區(qū)域。
分別計(jì)算出四個(gè)子塊的均值和方差:μR1=5.5,σR1=1.73;μR2=7.5,σR2=1.29;μR3=2.5;σR3=0;μR4=3.75;σR4=2.87。
根據(jù)一致性準(zhǔn)則判斷出R2和R3不需分裂,而R1和R4需要繼續(xù)分裂,剛好分裂為單個(gè)像素,如圖(b)所示。根據(jù)相似性準(zhǔn)則,先合并同節(jié)點(diǎn)下滿足一致性準(zhǔn)則的相鄰子區(qū)域,R11、R12和R13合并為一個(gè)區(qū)域(記為G1),R42、R43和R44合并為另一個(gè)子區(qū)域(記為G2),如圖(c)所示。最后合并具有相似性、不同節(jié)點(diǎn)下的相鄰區(qū)域,R14、R41和R2合并在一起,G1、G2和R3合并在一起,如圖(d)所示。第44頁,課件共130頁,創(chuàng)作于2023年2月
5.3邊緣檢測(cè)
圖像的邊緣是圖像最基本的特征,它是灰度不連續(xù)的結(jié)果。通過計(jì)算一階導(dǎo)數(shù)或二階導(dǎo)數(shù)可以方便地檢測(cè)出圖像中每個(gè)像素在其鄰域內(nèi)的灰度變化,從而檢測(cè)出邊緣。圖像中具有不同灰度的相鄰區(qū)域之間總存在邊緣。常見的邊緣類型有階躍型、斜坡型、線狀型和屋頂型,如圖5-10所示(第一行為具有邊緣的圖像,第二行為其灰度表面圖)。階躍型邊緣是一種理想的邊緣,由于采樣等緣故,邊緣處總有一些模糊,因而邊緣處會(huì)有灰度斜坡,形成了斜坡型邊緣。斜坡型邊緣的坡度與被模糊的程度成反比,模糊程度高的邊緣往往表現(xiàn)為厚邊緣。線狀型邊緣有一個(gè)灰度突變,對(duì)應(yīng)圖像中的細(xì)線條;而屋頂型邊緣兩側(cè)的灰度斜坡相對(duì)平緩,對(duì)應(yīng)粗邊緣。第45頁,課件共130頁,創(chuàng)作于2023年2月圖5-10圖像中不同類型的邊緣第46頁,課件共130頁,創(chuàng)作于2023年2月5.3.1微分算子
圖5-11給出了幾種典型的邊緣及其相應(yīng)的一階導(dǎo)數(shù)和二階導(dǎo)數(shù)。對(duì)于斜坡型邊緣,在灰度斜坡的起點(diǎn)和終點(diǎn),其一階導(dǎo)數(shù)均有一個(gè)階躍,在斜坡處為常數(shù),其它地方為零;其二階導(dǎo)數(shù)在斜坡起點(diǎn)產(chǎn)生一個(gè)向上的脈沖,在終點(diǎn)產(chǎn)生一個(gè)向下的脈沖,其它地方為零,在兩個(gè)脈沖之間有一個(gè)過零點(diǎn)。因此,通過檢測(cè)一階導(dǎo)數(shù)的極大值,可以確定斜坡型邊緣;通過檢測(cè)二階導(dǎo)數(shù)的過零點(diǎn),可以確定邊緣的中心位置。第47頁,課件共130頁,創(chuàng)作于2023年2月對(duì)于線狀型邊緣,在邊緣的起點(diǎn)與終點(diǎn)處,其一階導(dǎo)數(shù)都有一個(gè)階躍,分別對(duì)應(yīng)極大值和極小值;在邊緣的起點(diǎn)與終點(diǎn)處,其二階導(dǎo)數(shù)都對(duì)應(yīng)一個(gè)向上的脈沖,在邊緣中心對(duì)應(yīng)一個(gè)向下的脈沖,在邊緣中心兩側(cè)存在兩個(gè)過零點(diǎn)。因此,通過檢測(cè)二階差分的兩個(gè)過零點(diǎn),就可以確定線狀型邊緣的范圍;檢測(cè)二階差分的極小值,可以確定邊緣中心位置。屋頂型邊緣的一階導(dǎo)數(shù)和二階導(dǎo)數(shù)與線狀型類似,通過檢測(cè)其一階導(dǎo)數(shù)的過零點(diǎn)可以確定屋頂?shù)奈恢谩5?8頁,課件共130頁,創(chuàng)作于2023年2月圖5-11典型邊緣的一階導(dǎo)數(shù)與二階導(dǎo)數(shù)第49頁,課件共130頁,創(chuàng)作于2023年2月由上述分析可以得出以下結(jié)論:一階導(dǎo)數(shù)的幅度值可用來檢測(cè)邊緣的存在;通過檢測(cè)二階導(dǎo)數(shù)的過零點(diǎn)可以確定邊緣的中心位置;利用二階導(dǎo)數(shù)在過零點(diǎn)附近的符號(hào)可以確定邊緣像素位于邊緣的暗區(qū)還是亮區(qū)。另外,一階導(dǎo)數(shù)和二階導(dǎo)數(shù)對(duì)噪聲非常敏感,尤其是二階導(dǎo)數(shù)。因此,在邊緣檢測(cè)之前應(yīng)考慮圖像平滑,減弱噪聲的影響。在數(shù)字圖像處理中,常利用差分近似微分來求取導(dǎo)數(shù)。邊緣檢測(cè)可借助微分算子(包括梯度算子和拉普拉斯算子)在空間域通過模板卷積來實(shí)現(xiàn)。第50頁,課件共130頁,創(chuàng)作于2023年2月
1.梯度算子
常用的梯度算子如表4-3所示(星號(hào)代表模板中心)。梯度算子一般由兩個(gè)模板組成,分別對(duì)應(yīng)梯度的兩個(gè)偏導(dǎo)數(shù),用于計(jì)算兩個(gè)相互垂直方向上的邊緣響應(yīng)。在計(jì)算梯度幅度時(shí),可使用式(4-25)或式(4-26),在適當(dāng)?shù)拈撝迪?,?duì)得到梯度圖像二值化即可檢測(cè)出有意義的邊緣。第51頁,課件共130頁,創(chuàng)作于2023年2月
Krisch算子由8個(gè)模板組成,其它模板可以由其中一個(gè)模板繞其中心旋轉(zhuǎn)得到,每個(gè)模板都對(duì)特定的邊緣方向作出最大響應(yīng)。當(dāng)把最大響應(yīng)的模板的序號(hào)輸出時(shí),就構(gòu)成了邊緣方向的編碼。Prewitt算子和Sobel算子也可以像Krisch算子那樣,擴(kuò)展到兩個(gè)對(duì)角方向,使其在對(duì)角方向上作出最大響應(yīng)。Prewitt和Sobel算子在兩個(gè)對(duì)角方向上的模板如圖5-12所示。第52頁,課件共130頁,創(chuàng)作于2023年2月圖5-12Prewitt算子和Sobel算子檢測(cè)對(duì)角方向邊緣的模板(a)Prewitt算子45度和-45度方向模板(b)Sobel算子45度和-45度方向模板第53頁,課件共130頁,創(chuàng)作于2023年2月圖5-13(b)為用Sobel水平模板(表4-3中的H1模板)對(duì)圖5-13(a)進(jìn)行卷積運(yùn)算得到的水平梯度圖,它對(duì)垂直邊緣有較強(qiáng)的響應(yīng)。圖5-13(c)為用Sobel垂直模板(表4-3中的H2模板)對(duì)圖5-13(a)進(jìn)行卷積運(yùn)算得到的垂直梯度圖,它對(duì)水平邊緣有較強(qiáng)的響應(yīng)。圖5-13(d)為根據(jù)式(4-25)得到的Sobel算子梯度圖。第54頁,課件共130頁,創(chuàng)作于2023年2月圖5-13Sobel算子邊緣檢測(cè)第55頁,課件共130頁,創(chuàng)作于2023年2月
2.高斯-拉普拉斯(LOG)算子
拉普拉斯算子由式(4-31)定義,常用的兩個(gè)拉普拉斯模板見圖4-16(a)和(b)。其中,第一個(gè)模板在水平和垂直4個(gè)方向上具有各向同性,而第二個(gè)模板在水平、垂直和對(duì)角8個(gè)方向上具有各向同性。然而,拉普拉斯算子一般不直接用于邊緣檢測(cè),因?yàn)樗鳛橐环N二階微分算子對(duì)噪聲相當(dāng)敏感,常產(chǎn)生雙邊緣,且不能檢測(cè)邊緣方向。主要利用拉普拉斯算子的過零點(diǎn)性質(zhì)確定邊緣位置,以及根據(jù)其值的正負(fù)來確定邊緣像素位于邊緣的暗區(qū)還是明區(qū)。第56頁,課件共130頁,創(chuàng)作于2023年2月高斯-拉普拉斯(LOG)算子把高斯平滑濾波器和拉普拉斯銳化濾波器結(jié)合起來實(shí)現(xiàn)邊緣檢測(cè),即先通過高斯平滑抑制噪聲,以減輕噪聲對(duì)拉普拉斯算子的影響,再進(jìn)行拉普拉斯運(yùn)算,通過檢測(cè)其過零點(diǎn)來確定邊緣位置。因此,高斯-拉普拉斯算子是一種性能較好的邊緣檢測(cè)器。二維高斯平滑函數(shù)表示如下:(5-22)第57頁,課件共130頁,創(chuàng)作于2023年2月其中,σ是高斯分布的均方差,圖像被模糊的程度與其成正比。令r2=x2+y2,上式對(duì)r求二階導(dǎo)數(shù)來計(jì)算其拉普拉斯值,則有(5-23)第58頁,課件共130頁,創(chuàng)作于2023年2月上式是一個(gè)軸對(duì)稱函數(shù),由于其曲面形狀(圖5-14(a)是它的一個(gè)剖面)很像一頂墨西哥草帽,所以又叫墨西哥草帽函數(shù)。給定均方差σ后,對(duì)其離散化就可以得到相應(yīng)的LOG算子模板,圖5-14(b)是常用的5×5模板之一(模板并不唯一)。利用LOG算子檢測(cè)邊緣時(shí),可直接用其模板與圖像卷積,也可以先與高斯函數(shù)卷積,再與拉普拉斯模板卷積,兩者是等價(jià)的。由于LOG算子模板一般比較大,因而用第二種方法可以提高速度。第59頁,課件共130頁,創(chuàng)作于2023年2月圖5-14LOG算子剖面及其常用的5×5模板第60頁,課件共130頁,創(chuàng)作于2023年2月圖5-15是Prewitt算子、Sobel算子和LOG算子對(duì)圖5-15(a)的邊緣檢測(cè)結(jié)果。由圖可以看出,前兩種算子的檢測(cè)結(jié)果基本相同,而LOG算子則能提取對(duì)比度弱的邊緣(如后面的高樓),邊緣定位精度高。第61頁,課件共130頁,創(chuàng)作于2023年2月圖5-15三種邊緣檢測(cè)算子的檢測(cè)結(jié)果第62頁,課件共130頁,創(chuàng)作于2023年2月
3.Canny邊緣檢測(cè)
Canny邊緣檢測(cè)算子是一個(gè)非常普遍和有效的算子。Canny算子首先對(duì)灰度圖像用均方差為σ的高斯濾波器進(jìn)行平滑,然后對(duì)平滑后圖像的每個(gè)像素計(jì)算梯度幅值和梯度方向。梯度方向用于細(xì)化邊緣,如果當(dāng)前像素的梯度幅值不高于梯度方向上兩個(gè)鄰點(diǎn)的梯度幅值,則抑制該像素響應(yīng),從而使得邊緣細(xì)化,這種方法稱之為非最大抑制(NonmaximumSuppression)。該方法也可以結(jié)合其它邊緣檢測(cè)算子來細(xì)化邊緣。第63頁,課件共130頁,創(chuàng)作于2023年2月為了便于處理,需要將梯度方向量化到8個(gè)鄰域方向上。Canny算子使用兩個(gè)幅值閾值,高閾值用于檢測(cè)梯度幅值大的強(qiáng)邊緣,低閾值用于檢測(cè)梯度幅值較小的弱邊緣。低閾值通常取為高閾值的一半。邊緣細(xì)化后,就開始跟蹤具有高幅值的輪廓。最后,從滿足高閾值的邊緣像素開始,順序跟蹤連續(xù)的輪廓段,把與強(qiáng)邊緣相連的弱邊緣連接起來。圖5-16是Canny算子與Robert算子和Sobel算子對(duì)大米圖像的邊緣檢測(cè)效果對(duì)比,可見Canny算子檢測(cè)的邊緣比較完整。第64頁,課件共130頁,創(chuàng)作于2023年2月圖5-16幾種邊緣檢測(cè)效果的比較第65頁,課件共130頁,創(chuàng)作于2023年2月5.3.2邊界連接
由于噪聲等因素的影響,各種算子的檢測(cè)結(jié)果通常是一些分散的邊緣,沒有形成分割區(qū)域所需的閉合邊界。為此,需要將檢測(cè)出的邊緣像素按照某種準(zhǔn)則連接起來,常用的一種方法是根據(jù)鄰近的邊緣像素在梯度幅度和梯度方向上具有一定相似性而將它們連接起來,設(shè)T是幅度閾值,A是角度閾值,若像素(p,q)在像素(x,y)的鄰域內(nèi),且它們的梯度幅度和梯度方向分別滿足以下兩個(gè)條件:第66頁,課件共130頁,創(chuàng)作于2023年2月(5-24)(5-25)式中:(x,y)點(diǎn)處的梯度方向定義見式(4-26)。另外,利用數(shù)學(xué)形態(tài)學(xué)的一些操作也可以實(shí)現(xiàn)邊界連接。第67頁,課件共130頁,創(chuàng)作于2023年2月5.3.3哈夫變換
在已知區(qū)域形狀的條件下,利用哈夫變換(HoughTransform)可以方便地檢測(cè)到邊界曲線。哈夫變換的主要優(yōu)點(diǎn)是受噪聲和曲線間斷的影響小,但計(jì)算量較大,通常用于檢測(cè)已知形狀的目標(biāo),如直線、圓等。第68頁,課件共130頁,創(chuàng)作于2023年2月
1.直線檢測(cè)
在圖像空間xy里,過點(diǎn)(xi,yi)的直線方程可表示為yi=axi+b,其中a和b分別表示直線的斜率和截距。如果將直線方程改寫為b=-xia+yi,則它表示ab空間(稱之為參數(shù)空間)中斜率為-xi、截距為yi的一條直線,且經(jīng)過點(diǎn)(a,b)。對(duì)于圖像空間中與(xi,yi)共線的另一點(diǎn)(xj,yj),它滿足方程yj=axj+b,對(duì)應(yīng)于參數(shù)空間中斜率為-xj、截距為yj的一條直線,也必然經(jīng)過點(diǎn)(a,b)。因此,可以推知,圖像空間中同一條直線(斜率為a,截距為b)上的點(diǎn)對(duì)應(yīng)于參數(shù)空間中相交于一點(diǎn)(坐標(biāo)為(a,b))的一系列直線。哈夫變換就是利用這種點(diǎn)—線對(duì)應(yīng)關(guān)系,把圖像空間中的檢測(cè)問題轉(zhuǎn)換到參數(shù)空間中處理。第69頁,課件共130頁,創(chuàng)作于2023年2月哈夫變換需要建立一個(gè)累加數(shù)組,數(shù)組的維數(shù)與所檢測(cè)的曲線方程中的未知參數(shù)個(gè)數(shù)相同。對(duì)于直線,它有a和b兩個(gè)未知參數(shù),因而需要一個(gè)二維累加數(shù)組。具體計(jì)算時(shí),需要對(duì)未知參數(shù)的可能取值進(jìn)行量化,以減少運(yùn)算量。如果將參數(shù)a和b分別量化為m和n個(gè)數(shù),則定義一個(gè)累加數(shù)組A(m,n)并初始化為零。第70頁,課件共130頁,創(chuàng)作于2023年2月假設(shè)a和b量化之后的可能取值分別為{a0,a1,…,am-1}和{b0,b1,…,bn-1}。對(duì)于圖像空間中的每個(gè)目標(biāo)點(diǎn)(xk,yk),讓a取遍所有可能的值,根據(jù)b=-xka+yk計(jì)算出相應(yīng)的b,并將結(jié)果取為最接近的可能取值。根據(jù)每一對(duì)計(jì)算結(jié)果(ap,bq)(p∈[0,m-1],q∈[0,n-1]),對(duì)數(shù)組進(jìn)行累加:A(p,q)=A(p,q)+1。處理完所有像素后,根據(jù)A(p,q)的值便可知道斜率為ap、截距為bq的直線上有多少個(gè)點(diǎn)。通過查找累加數(shù)組中的峰值,可以得知圖像中最有可能的直線參數(shù)。第71頁,課件共130頁,創(chuàng)作于2023年2月如果需要檢測(cè)的直線接近豎直方向,則會(huì)由于斜率和截距的取值趨于無窮而需要很大的累加數(shù)組,導(dǎo)致計(jì)算量增大。解決方法之一就是用圖5-17(a)所示的極坐標(biāo)來表示直線方程:(5-26)第72頁,課件共130頁,創(chuàng)作于2023年2月式中:ρ表示原點(diǎn)到直線的距離;θ為垂線與x軸的夾角。對(duì)ρ和θ量化后建立一個(gè)累加數(shù)組(見圖5-17(b)),其優(yōu)勢(shì)在于取值都是有限的。原先的點(diǎn)-直線對(duì)應(yīng)關(guān)系就變成了點(diǎn)-正弦曲線的對(duì)應(yīng)關(guān)系。計(jì)算方法與前面的相似。為了提高效率,可以先計(jì)算出每一點(diǎn)的梯度幅值和梯度方向。如果該點(diǎn)的梯度幅值小于某個(gè)閾值,即屬于邊緣點(diǎn)的可能性很小,則不計(jì)算該點(diǎn)的參數(shù),否則將梯度方向角代入式(5-26)得出ρ。這樣,對(duì)于每一個(gè)邊緣點(diǎn),沒有必要將所有θ值代入方程求解,而只需根據(jù)梯度方向角計(jì)算一次。第73頁,課件共130頁,創(chuàng)作于2023年2月圖5-17直線的極坐標(biāo)表示及其對(duì)應(yīng)的累加數(shù)組第74頁,課件共130頁,創(chuàng)作于2023年2月
2.圓的檢測(cè)
圓的直角坐標(biāo)系方程為
(x-a)2+(y-b)2=r2
(5-27)
由此可見,方程中有3個(gè)未知參數(shù):圓心坐標(biāo)a和b,半徑r。需要建立一個(gè)三維數(shù)組,對(duì)于每一個(gè)像素,依次變化a和b,由式(5-27)計(jì)算出r。但計(jì)算量非常大。不難發(fā)現(xiàn),圓周上任意一點(diǎn)的梯度方向均指向圓心或背離圓心。因此,只要知道了半徑和圓周上一點(diǎn)的梯度方向,便可確定出圓心位置。第75頁,課件共130頁,創(chuàng)作于2023年2月圓的極坐標(biāo)系方程為
x=a+rcosθ,y=b+rsinθ
(5-28)
則圓的參數(shù)方程為
a=x-rcosθ,b=y-rsinθ
(5-29)
式中:r為半徑;θ為點(diǎn)(x,y)到圓心(a,b)的連線與水平軸的夾角。有了某點(diǎn)的梯度方向之后,可讓r取遍所有值,由式(5-29)計(jì)算出對(duì)應(yīng)的圓心坐標(biāo)。第76頁,課件共130頁,創(chuàng)作于2023年2月
3.任意曲線檢測(cè)
哈夫變換可以推廣到具有解析形式f(x,a)=0的任意曲線,其中,x表示圖像像素坐標(biāo),a是參數(shù)向量。任意曲線的檢測(cè)過程如下:
(1)根據(jù)參數(shù)個(gè)數(shù)建立并初始化累加數(shù)組A[a]為0。
(2)根據(jù)某個(gè)準(zhǔn)則,如梯度幅值大于某個(gè)閾值,確定某點(diǎn)是否為邊緣點(diǎn)。對(duì)于每個(gè)邊緣點(diǎn)x,確定a,使得f(x,a)=0,并累加對(duì)應(yīng)的數(shù)組元素:A[a]=A[a]+1。第77頁,課件共130頁,創(chuàng)作于2023年2月
(3)A的局部最大值對(duì)應(yīng)圖像中的曲線,它表示圖像中有多少個(gè)點(diǎn)滿足該曲線。
對(duì)A中某元素對(duì)應(yīng)的所有點(diǎn)的連通性進(jìn)行判斷,可以將對(duì)應(yīng)的線段連接起來。還可以利用最小二乘擬合法將這些點(diǎn)擬合成對(duì)應(yīng)的曲線。哈夫變換能夠抽取明顯的斷線或虛線特征,如一排石子或者一條被下落樹枝分割的道路等。第78頁,課件共130頁,創(chuàng)作于2023年2月
5.4區(qū)域標(biāo)記與輪廓跟蹤
5.4.1區(qū)域標(biāo)記
圖像分割的結(jié)果通常是一幅二值圖像,所有的目標(biāo)區(qū)域都被賦予同一種灰度值。如果圖像中有多個(gè)目標(biāo)區(qū)域,并且希望分析各個(gè)目標(biāo)的大小、形狀等特征時(shí),就需要對(duì)目標(biāo)區(qū)域加以區(qū)分。區(qū)域標(biāo)記是指對(duì)圖像中同一連通區(qū)域的所有像素賦予相同的標(biāo)記,不同的連通區(qū)域賦予不同的標(biāo)記。常用的區(qū)域標(biāo)記方法有兩種:遞歸標(biāo)記和序貫標(biāo)記。第79頁,課件共130頁,創(chuàng)作于2023年2月
1.遞歸標(biāo)記
遞歸標(biāo)記算法如下:
(1)從左到右,從上到下逐行逐列掃描圖像,尋找沒有標(biāo)記的目標(biāo)點(diǎn)P,給該點(diǎn)分配一個(gè)新的標(biāo)記。
(2)遞歸分配同一標(biāo)記給P點(diǎn)的鄰域目標(biāo)像素。
(3)直到相互連接的像素全部標(biāo)記完畢,一個(gè)連通區(qū)域就標(biāo)上了同樣的記號(hào)。
(4)重復(fù)步驟(1)、(2)和(3),尋找未標(biāo)記的目標(biāo)點(diǎn)并遞歸分配同一標(biāo)記給其鄰域目標(biāo)點(diǎn);若找不到未標(biāo)記的目標(biāo)點(diǎn),則圖像標(biāo)記完畢。
遞歸標(biāo)記算法在串行機(jī)上運(yùn)行非常費(fèi)時(shí),適用于并行機(jī)處理。第80頁,課件共130頁,創(chuàng)作于2023年2月
2.序貫標(biāo)記
8連通區(qū)域的序貫標(biāo)記算法如下:
(1)從左到右、從上到下掃描圖像,尋找未標(biāo)記的目標(biāo)點(diǎn)P。
(2)如果P點(diǎn)的左、左上、上、右上4個(gè)鄰點(diǎn)都是背景點(diǎn),則賦予像素P一個(gè)新的標(biāo)記;如果4個(gè)鄰點(diǎn)中有1個(gè)已標(biāo)記的目標(biāo)像素,則把該像素的標(biāo)記賦給當(dāng)前像素P;如果4個(gè)鄰點(diǎn)中有2個(gè)不同的標(biāo)記,則把其中的1個(gè)標(biāo)記賦給當(dāng)前像素P,并把這兩個(gè)標(biāo)記記入一個(gè)等價(jià)表,表明它們等價(jià)。
(3)第二次掃描圖像,將每個(gè)標(biāo)記修改為它在等價(jià)表中的最小標(biāo)記。第81頁,課件共130頁,創(chuàng)作于2023年2月
4連通區(qū)域的序貫標(biāo)記算法與8連通區(qū)域的相同,只是在步驟(2)中僅判斷左鄰點(diǎn)和上鄰點(diǎn)。
序貫標(biāo)記算法通常要求對(duì)圖像進(jìn)行兩次掃描。由于該算法一次僅運(yùn)算圖像的兩行,因此當(dāng)圖像以文件形式存儲(chǔ)且內(nèi)存空間不允許把整幅圖像全部載入時(shí),也能使用該算法。它在第二次掃描圖像時(shí),利用等價(jià)表給同一連通區(qū)域的所有像素分配唯一的標(biāo)記。但是,當(dāng)圖像中的目標(biāo)區(qū)域十分不規(guī)則時(shí),會(huì)導(dǎo)致龐大的等價(jià)表。第82頁,課件共130頁,創(chuàng)作于2023年2月5.4.2輪廓提取
輪廓提取和輪廓跟蹤的目的都是為了獲取目標(biāo)區(qū)域的外部輪廓特征,為形狀分析和目標(biāo)識(shí)別做準(zhǔn)備。
二值圖像的輪廓提取算法非常簡(jiǎn)單,就是掏空目標(biāo)區(qū)域的內(nèi)部點(diǎn)。假設(shè)圖像的目標(biāo)像素為白色,背景像素為黑色,則如果圖像中某個(gè)像素為黑色,且它的8個(gè)鄰點(diǎn)都是黑色時(shí),表明該點(diǎn)是內(nèi)部點(diǎn),否則為邊界點(diǎn)。將判斷出的內(nèi)部像素置為背景色,對(duì)所有內(nèi)部像素執(zhí)行該操作便可完成圖像輪廓的提取。第83頁,課件共130頁,創(chuàng)作于2023年2月5.4.3輪廓跟蹤
輪廓跟蹤就是順序找出邊界點(diǎn),不僅可以跟蹤出邊界,還可以同時(shí)記錄邊界信息,如生成邊界鏈碼,為圖像分析做準(zhǔn)備。下面介紹一種二值圖像的輪廓跟蹤算法。
輪廓跟蹤可以基于4方向碼和8方向碼分別跟蹤出4連通的輪廓和8連通的輪廓,方向碼的定義如圖5-18所示。但對(duì)于大多數(shù)區(qū)域,不一定存在封閉的4連通輪廓,會(huì)導(dǎo)致基于4
方向碼的輪廓跟蹤失敗。因此,常用基于8方向碼的輪廓跟蹤。假設(shè)需要處理的圖像為二值圖像,且圖像中只有一個(gè)連通的目標(biāo)區(qū)域,則輪廓跟蹤算法如下。第84頁,課件共130頁,創(chuàng)作于2023年2月圖5-18輪廓跟蹤的方向碼第85頁,課件共130頁,創(chuàng)作于2023年2月步驟1首先從上到下、從左到右順序掃描圖像,尋找第一個(gè)目標(biāo)點(diǎn)作為邊界跟蹤的起始點(diǎn),記為A。A點(diǎn)一定是最左角上的邊界點(diǎn),其相鄰的邊界點(diǎn)只可能出現(xiàn)在它的左下、
下、右下、右四個(gè)鄰點(diǎn)中。定義一個(gè)搜索方向變量dir,用于記錄從當(dāng)前邊界點(diǎn)搜索下一個(gè)相鄰邊界點(diǎn)時(shí)所用的搜索方向碼。dir初始化為:
(1)對(duì)基于4方向的輪廓跟蹤,dir=3,即從方向3開始搜索與A相鄰的下一個(gè)邊界點(diǎn)。
(2)對(duì)基于8方向的輪廓跟蹤,dir=5,即從方向5開始搜索與A相鄰的下一個(gè)邊界點(diǎn)。第86頁,課件共130頁,創(chuàng)作于2023年2月如果當(dāng)前搜索方向dir上的鄰點(diǎn)不是邊界點(diǎn),則依次使搜索方向逆時(shí)針旋轉(zhuǎn)一個(gè)方向,更新dir,直到搜索到一個(gè)邊界點(diǎn)為止。如果所有方向都未找到相鄰的邊界點(diǎn),則該點(diǎn)是一個(gè)孤立點(diǎn)。dir的更新用公式可表示為:對(duì)基于8方向的輪廓跟蹤有dir=(dir+1)mod8,對(duì)基于4方向的輪廓跟蹤有dir=(dir+1)mod4。第87頁,課件共130頁,創(chuàng)作于2023年2月步驟2把上一次搜索到的邊界點(diǎn)作為當(dāng)前邊界點(diǎn),在其3×3鄰域內(nèi)按逆時(shí)針方向搜索新的邊界點(diǎn),它的起始搜索方向設(shè)定如下:
(1)對(duì)基于4方向的輪廓跟蹤,使dir=(dir+3)mod4,即將上一個(gè)邊界點(diǎn)到當(dāng)前邊界點(diǎn)的搜索方向dir順時(shí)針旋轉(zhuǎn)一個(gè)方向;
(2)對(duì)基于8方向的輪廓跟蹤,若上次搜索到邊界點(diǎn)的方向dir為奇數(shù),則使dir=(dir+6)mod8,即將上次的搜索方向順時(shí)針旋轉(zhuǎn)兩個(gè)方向;若dir為偶數(shù),則使dir=(dir+7)mod8,即將上次的搜索方向順時(shí)針旋轉(zhuǎn)一個(gè)方向。第88頁,課件共130頁,創(chuàng)作于2023年2月如果起始搜索方向沒有找到邊界點(diǎn),則依次使搜索方向逆時(shí)針旋轉(zhuǎn)一個(gè)方向,更新dir,直到搜索到一個(gè)新的邊界點(diǎn)為止。
步驟3如果搜索到的邊界點(diǎn)就是第一個(gè)邊界點(diǎn)A,則停止搜索,結(jié)束跟蹤,否則重復(fù)步驟2繼續(xù)搜索。
由依次搜索到的邊界點(diǎn)系列就構(gòu)成了被跟蹤的邊界。步驟1中所采用的準(zhǔn)則稱為“探測(cè)準(zhǔn)則”,其作用是找出第一個(gè)邊界點(diǎn);步驟2中所采用的準(zhǔn)則稱為“跟蹤準(zhǔn)則”,其作用是找出所有邊界點(diǎn)。第89頁,課件共130頁,創(chuàng)作于2023年2月圖5-19為基于8方向的輪廓跟蹤示例。圖中的邊界像素用灰色表示,區(qū)域內(nèi)部像素用斜線填充,虛線箭頭表示從當(dāng)前邊界點(diǎn)搜索下一個(gè)邊界點(diǎn)的起始方向,實(shí)線箭頭表示搜索到下一個(gè)邊界點(diǎn)所用的方向。從最左上角點(diǎn)A開始,沿方向5搜索下一個(gè)邊界點(diǎn)為B。由于搜索到B的方向?yàn)槠鏀?shù),則應(yīng)該將方向5順時(shí)針旋轉(zhuǎn)兩個(gè)方向,即從方向3開始在B的鄰域內(nèi)沿逆時(shí)針?biāo)阉餍碌倪吔琰c(diǎn)。方向3、4、5上都未找到邊界點(diǎn),接著沿方向6查找,結(jié)果找到邊界點(diǎn)C。由于搜索到C點(diǎn)的方向?yàn)榕紨?shù),則應(yīng)該將方向6順時(shí)針旋轉(zhuǎn)一個(gè)方向,即從方向5開始在C的鄰域內(nèi)沿逆時(shí)針?biāo)阉餍碌倪吔琰c(diǎn),該方向上未找到邊界點(diǎn),繼續(xù)逆時(shí)針查找,在方向6上搜索到了一個(gè)邊界點(diǎn)D。繼續(xù)上述搜索,直到找到A點(diǎn)為止,即完成了邊界跟蹤。第90頁,課件共130頁,創(chuàng)作于2023年2月圖5-19基于8方向的輪廓跟蹤示例第91頁,課件共130頁,創(chuàng)作于2023年2月上述算法是輪廓跟蹤的基本算法,它無法處理圖像中的孔洞邊界,得到的輪廓是目標(biāo)區(qū)域的內(nèi)邊界(邊界點(diǎn)屬于目標(biāo)區(qū)域)。對(duì)于區(qū)域標(biāo)記后的圖像,可以使用該算法跟蹤多個(gè)區(qū)域的邊界。第92頁,課件共130頁,創(chuàng)作于2023年2月
5.5分水嶺分割
分水嶺分割算法(WatershedSegmentationAlgorithm)把地形學(xué)和水文學(xué)的概念引入到基于區(qū)域的圖像分割中,特別適合粘連區(qū)域的分割?;叶葓D像可以看做是一片地形,像素的灰度值代表該點(diǎn)的地形高度,在地形中有高地、分水線、集水盆地等地貌特征。地形表面上總會(huì)有一些局部最小點(diǎn)(RegionalMinima),又稱為低洼,落在這些點(diǎn)的雨水不會(huì)流向它處。在一些點(diǎn)上,降落的雨水會(huì)沿著地形表面往低處流,最終流向同一個(gè)低洼,就把這些點(diǎn)稱為與該低洼相關(guān)的集水盆地(CatchmentBasin)。在另外一些點(diǎn)上,降落的雨水可能會(huì)等概率地流向不同的低洼,將這些點(diǎn)稱為分水線(WatershedLine或DivideLine),如圖5-20(a)所示。第93頁,課件共130頁,創(chuàng)作于2023年2月圖5-20分水嶺示意圖第94頁,課件共130頁,創(chuàng)作于2023年2月
1.基本分水嶺算法
分水嶺分割算法的主要目的就是找出集水盆地之間的分水線。降雨法(Rainfall)和淹沒法(Flooding)是常用的兩種基本算法。
降雨法的基本思想是:首先找出圖像中的低洼,給每個(gè)低洼賦予不同的標(biāo)記;落在未標(biāo)記點(diǎn)上的雨水將流向更低的鄰點(diǎn),最終到達(dá)一個(gè)低洼,將低洼的標(biāo)記賦予該點(diǎn);如果某點(diǎn)的雨水可能流向多個(gè)低洼,則標(biāo)記為分水線點(diǎn)。所有點(diǎn)處理完畢后,就形成了不同標(biāo)記的區(qū)域和區(qū)域之間的分水線。第95頁,課件共130頁,創(chuàng)作于2023年2月淹沒法的基本思想是:假想每個(gè)低洼都有一個(gè)洞,把整個(gè)地形逐漸沉入湖中,則處在水平面以下的低洼不斷涌入水流,逐漸填滿與低洼相關(guān)的集水盆地;當(dāng)來自不同低洼的水在某些點(diǎn)將要匯合時(shí),即水將要從一個(gè)盆地溢出時(shí),就在這些點(diǎn)上筑壩(DamConstruction),阻止水流溢出;當(dāng)水淹沒至地形最高點(diǎn)時(shí),筑壩過程停止;最終所有的水壩就形成了分水線,地形就被分成了不同的區(qū)域或盆地。圖5-20(b)是筑壩過程示意圖,黑色區(qū)域?yàn)榈屯荩疑珔^(qū)域?yàn)樗乃畨?,虛線表示被水淹沒的高度。
最簡(jiǎn)單的筑壩方法就是形態(tài)膨脹。從最低灰度開始,逐灰度級(jí)膨脹各低洼,當(dāng)膨脹結(jié)果使得兩個(gè)盆地匯合時(shí),標(biāo)記這些點(diǎn)為分水線點(diǎn)。膨脹被限制在連通區(qū)域內(nèi),最后的分水線就把不同的區(qū)域分開了。第96頁,課件共130頁,創(chuàng)作于2023年2月
2.Vincent-Soille算法
除了上述兩種分水嶺基本算法外,還有其它一些算法。下面介紹一種模擬沉浸(Immersion)的Vincent-Soille算法。
設(shè)hmin和hmax是灰度圖像I的最低灰度和最高灰度,Th(I)表示灰度值小于等于閾值h的所有像素,即Th(I)={p|I(p)≤h}。M1,M2,…,MR為圖像中的局部最小點(diǎn),即低洼。C(Mi)表示與低洼Mi相對(duì)應(yīng)的集水盆地。Ch(Mi)表示C(Mi)的一個(gè)子集,它由該集水盆地中灰度值小于等于h的所有像素組成,即Ch(Mi)=C(Mi)∩Th(I)。minh(I)表示灰度值等于h的所有局部最小點(diǎn)。第97頁,課件共130頁,創(chuàng)作于2023年2月令C[h]表示所有集水盆地中灰度值小于等于閾值h的像素集合,即:
那么,C[hmax]就是所有集水盆地的并集。顯然,C[h-1]是Th(I)的一個(gè)子集。
假設(shè)已經(jīng)得到閾值h-1下的C[h-1],現(xiàn)在需要從C[h-1]獲得C[h]。若Y為包含于Th(I)的一個(gè)連通成分,則Y與C[h-1]的交集有以下三種可能:
(5-30)第98頁,課件共130頁,創(chuàng)作于2023年2月
(1)Y∩C[h-1]為空集。顯然,此時(shí),Y是一個(gè)灰度值為h的新的低洼。
(2)Y∩C[h-1]不為空且是連通的。此時(shí),Y位于某個(gè)集水盆地,其灰度小于等于h。
(3)Y∩C[h-1]不為空且包含C[h-1]中的多個(gè)連通區(qū)域。此時(shí),Y中含有將多個(gè)集水盆地分割的分水線。當(dāng)繼續(xù)淹沒時(shí),可能就需要筑壩。第99頁,課件共130頁,創(chuàng)作于2023年2月于是,C[h]就包含對(duì)C[h-1]中的各集水盆地在水平h下擴(kuò)展得到的區(qū)域以及水平h下新出現(xiàn)的低洼。模擬沉浸法將C[hmin]初始化為Thmin(I),從最小灰度hmin開始,逐灰度級(jí)由C[h-1]構(gòu)造出C[h],直到hmax,此時(shí),得到的C[hmax]就是所需標(biāo)記的集水盆地。其它不屬于任何一個(gè)集水盆地的點(diǎn)就是分水線點(diǎn),通過在圖像中求C[hmax]的補(bǔ)集可以得到。
Vincent-Soille算法分為兩步:
(1)按照灰度值對(duì)像素從小到大排序,以便直接獲取某個(gè)灰度級(jí)的像素;
(2)從最低的低洼開始,逐灰度級(jí)淹沒集水盆地。第100頁,課件共130頁,創(chuàng)作于2023年2月因?yàn)樵谘蜎]過程中,每一步都只處理某一灰度級(jí)的像素,所以為了提高處理速度需要對(duì)像素排序。排序過程可以借助直方圖來實(shí)現(xiàn),由直方圖確定出各灰度級(jí)在數(shù)組中的偏移地址。
淹沒過程從最低灰度開始,逐灰度級(jí)淹沒。取出當(dāng)前灰度級(jí)的所有像素,置一個(gè)特殊的標(biāo)記,如MASK,對(duì)這些像素進(jìn)行處理。如果某個(gè)像素的鄰域有已標(biāo)記的像素,則通過比較距離,來確定該像素應(yīng)標(biāo)記為哪一個(gè)集水盆地或是分水線。剩余的沒有相鄰標(biāo)記的像素,就是新發(fā)現(xiàn)的局部最小點(diǎn),根據(jù)連通性給每一個(gè)連通成分賦予一個(gè)新的標(biāo)記。第101頁,課件共130頁,創(chuàng)作于2023年2月圖5-21(a)是一幅二值圖像,有許多圓形目標(biāo)粘連在一起,現(xiàn)在需要自動(dòng)計(jì)算出圓形目標(biāo)的數(shù)目。為了計(jì)數(shù),首先應(yīng)該將粘連的目標(biāo)分開,然后才能利用區(qū)域標(biāo)記的辦法算出圓形目標(biāo)的數(shù)目。利用距離變換使二值圖像變換為包含距離信息的灰度圖像,某個(gè)目標(biāo)像素的灰度值用該點(diǎn)到背景的最小距離表示。圖5-21(b)為圖(a)的距離變換結(jié)果,為了便于顯示,對(duì)變換結(jié)果進(jìn)行了反色與對(duì)比度增強(qiáng)。由圖(b)可以看出,相互粘連的目標(biāo)中間都有各自的局部最小點(diǎn)(黑色區(qū)域),粘連處有較高的灰度,因而可以對(duì)距離變換結(jié)果的負(fù)像進(jìn)行分水嶺分割。圖(c)為分割結(jié)果,由圖可見,除了少數(shù)幾個(gè)粘連特別嚴(yán)重的目標(biāo)外,其余目標(biāo)都被正確地分割出來。第102頁,課件共130頁,創(chuàng)作于2023年2月圖5-21分水嶺算法實(shí)現(xiàn)二值圖像中粘連目標(biāo)的分割第103頁,課件共130頁,創(chuàng)作于2023年2月分水嶺分割算法的主要缺點(diǎn)是會(huì)產(chǎn)生過分割(Oversegmentation),即分割出大量的細(xì)小區(qū)域,這些區(qū)域?qū)τ趫D像分析可以說是毫無意義的。這是由于噪聲等的影響,導(dǎo)致圖像中出現(xiàn)很多低洼。避免過分割現(xiàn)象的有效方法之一就是分割前先對(duì)圖像進(jìn)行平滑,以減少局部最小點(diǎn)數(shù)目;另一種就是對(duì)分割后的圖像按照某種準(zhǔn)則合并相鄰區(qū)域。另一種有效控制過分割現(xiàn)象的方法是基于標(biāo)記(Marker)的分水嶺分割算法,它使用內(nèi)部標(biāo)記(InternalMarker)和外部標(biāo)記(ExternalMarker)。一個(gè)標(biāo)記就是屬于圖像的一個(gè)連通成分,內(nèi)部標(biāo)記與某個(gè)感興趣的目標(biāo)相關(guān),外部標(biāo)記與背景相關(guān)。標(biāo)記的選取包括預(yù)處理和定義一組選取標(biāo)記的準(zhǔn)則。標(biāo)記選擇準(zhǔn)則可以是灰度值、連通性、尺寸、形狀、紋理等特征。有了內(nèi)部標(biāo)記之后,就只以這些內(nèi)部標(biāo)記為低洼進(jìn)行分割,分割結(jié)果的分水線作為外部標(biāo)記,然后對(duì)每個(gè)分割出來的區(qū)域利用其它分割技術(shù)(如閾值化)將背景與目標(biāo)分離出來。第104頁,課件共130頁,創(chuàng)作于2023年2月圖5-22(b)是利用Vincent-Soille算法對(duì)圖5-22(a)的梯度圖像進(jìn)行分割的結(jié)果。圖中出現(xiàn)了大量的細(xì)小區(qū)域,這對(duì)研究原圖的深色圓狀目標(biāo)毫無意義。究其原因,是由于梯度圖像存在大量局部最小點(diǎn),如圖(d)所示。通過圖像平滑在一定程度上可以減少局部最小點(diǎn)的數(shù)目,如用3×3的方形結(jié)構(gòu)元素對(duì)梯度圖像進(jìn)行形態(tài)學(xué)開啟和閉合運(yùn)算。圖(c)是對(duì)開閉運(yùn)算后的梯度圖像的分水嶺分割結(jié)果,可見過分割現(xiàn)象受到了一定程度的抑制,但該分割結(jié)果對(duì)于圖像分析仍無用處。借助于某些先驗(yàn)知識(shí),可以找出一些內(nèi)部標(biāo)記和外部標(biāo)記,基于標(biāo)記來分割圖像。第105頁,課件共130頁,創(chuàng)作于2023年2月根據(jù)原圖像的特點(diǎn),指定內(nèi)部標(biāo)記的選取準(zhǔn)則為:每一個(gè)內(nèi)部標(biāo)記都應(yīng)該是由相同灰度的像素構(gòu)成的一個(gè)連通區(qū)域,周圍像素與內(nèi)部標(biāo)記的灰度之差應(yīng)大于2。外部標(biāo)記的選取準(zhǔn)則為:內(nèi)部標(biāo)記之間的分水線作為外部標(biāo)記??梢韵葘?duì)內(nèi)部標(biāo)記圖像作距離變換,再進(jìn)行分水嶺分割得到外部標(biāo)記。圖(e)是把內(nèi)部標(biāo)記與外部標(biāo)記疊加到原始圖像中的效果,淺灰色區(qū)域?yàn)閮?nèi)部標(biāo)記,白色線條為外部標(biāo)記。圖(f)
是基于內(nèi)部標(biāo)記和外部標(biāo)記對(duì)梯度圖像的分水嶺分割結(jié)果。由此可見,只要指定恰當(dāng)?shù)臉?biāo)記選取準(zhǔn)則,基于標(biāo)記的分水嶺分割可以得到比較滿意的結(jié)果。第106頁,課件共130頁,創(chuàng)作于2023年2月圖5-22基于標(biāo)記的分水嶺分割第107頁,課件共130頁,創(chuàng)作于2023年2月
5.6投影法與差影法
5.6.1投影法
顧名思義,投影法就是把圖像在某一方向(常用水平方向和垂直方向)上進(jìn)行投影,在投影圖上便可反映出圖像中目標(biāo)對(duì)象的位置、尺寸等信息。圖5-23是一幅圖像分別在水平方向和垂直方向上的投影。
可以看出投影法是一種很自然的方法,有點(diǎn)像灰度直方圖。為了得到更好的效果,投影法經(jīng)常和閾值化一起使用。由于噪聲點(diǎn)對(duì)投影有一定的影響,所以處理前最好用平滑法去除噪聲,然后進(jìn)行閾值化處理,再對(duì)閾值化后的二值圖像在某個(gè)方向上進(jìn)行投影運(yùn)算。第108頁,課件共130頁,創(chuàng)作于2023年2月圖5-23投影法第109頁,課件共130頁,創(chuàng)作于2023年2月圖5-24(a)是著名的華盛頓紀(jì)念碑的一幅圖像。仔細(xì)觀察圖像可以發(fā)現(xiàn),紀(jì)念碑上像素的灰度都差不多,而且和其它區(qū)域的灰度值不同。如果選取合適的閾值對(duì)該圖進(jìn)行二值化處理,便可將紀(jì)念碑突出顯示出來,如圖(b)所示。利用投影法,可以從圖中自動(dòng)檢測(cè)到水平方向上紀(jì)念碑的位置。由于紀(jì)念碑所在的那些列的白色點(diǎn)比起其它列多得多,如果將圖(b)在垂直方向做投影,則如圖(c)所示,其中黑色線條的高度代表了該列上白色點(diǎn)的個(gè)數(shù),圖中間的高峰部分就是要找的水平方向上紀(jì)念碑所在的位置。第110頁,課件共130頁,創(chuàng)作于2023年2月圖5-24投影法檢測(cè)目標(biāo)位置第111頁,課件共130頁,創(chuàng)作于2023年2月5.6.2差影法
1.圖像的代數(shù)運(yùn)算
圖像的代數(shù)運(yùn)算是指對(duì)兩幅輸入圖像進(jìn)行點(diǎn)對(duì)點(diǎn)的加、減、乘、除四則運(yùn)算而得到輸出圖像的運(yùn)算。如果記輸入圖像為A(x,y)和B(x,y),輸出圖像為C(x,y),則四種圖像代數(shù)運(yùn)算的表達(dá)式如下:
C(x,y)=A(x,y)+B(x,y)
C(x,y)=A(x,y)-B(x,y)
C(x,y)=A(x,y)×B(x,y)
C(x,y)=A(x,y)/B(x,y)第112頁,課件共130頁,創(chuàng)作于2023年2月另外,還可通過適當(dāng)?shù)慕M合,形成涉及幾幅圖像的復(fù)合代數(shù)運(yùn)算方程。
圖像相加一般用于對(duì)同一場(chǎng)景的多幅圖像求平均,以便有效降低加性噪聲。通常,圖像采集系統(tǒng)中采集圖像時(shí)此類參數(shù)可供選擇。若直接采集的圖像品質(zhì)較好,則無需該處理,但是對(duì)于經(jīng)過長(zhǎng)距離模擬通信方式傳送的圖像(如太空航天器傳回的星際圖像),這種處理是不可缺少的。但利用求圖像平均降低噪聲的方法,只有當(dāng)噪聲可以用同一個(gè)獨(dú)立分布的隨機(jī)模型描述時(shí)才會(huì)有效。第113頁,課件共130頁,創(chuàng)作于2023年2月圖像相減運(yùn)算又稱為圖像差分運(yùn)算,常用于檢測(cè)圖像中的變化及運(yùn)動(dòng)物體。差分方法可以分為控制環(huán)境下的簡(jiǎn)單差分方法和基于背景模型的差分方法。在控制環(huán)境下,或者在很短的時(shí)間間隔內(nèi),可以認(rèn)為背景是固定不變的,直接使用差分運(yùn)算檢測(cè)出圖像中的變化及運(yùn)動(dòng)的物體。該方法與閾值化處理結(jié)合,是建立機(jī)器視覺系統(tǒng)最有效的方法之一。在相對(duì)穩(wěn)定的環(huán)境下,可以假設(shè)背景變化緩慢,且符合一定的分布規(guī)律,通過建立背景模型,利用差分方法來檢測(cè)運(yùn)動(dòng)物體,也可獲得很好的效果。第114頁,課件共130頁,創(chuàng)作于2023年2月乘法運(yùn)算可以用來實(shí)現(xiàn)掩模處理,即屏蔽掉圖像的某些部分。此外,由于空間域的卷積和相關(guān)運(yùn)算與頻率域的乘積運(yùn)算對(duì)應(yīng),乘法運(yùn)算有時(shí)也作為一種技巧來實(shí)現(xiàn)卷積或相關(guān)處理。
除法運(yùn)算可用于校正成像設(shè)備的非線性影響,在特殊形態(tài)的圖像(如CT等醫(yī)學(xué)圖像)處理中用到。第115頁,課件共130頁,創(chuàng)作于2023年2月
2.差影法
所謂差影法,實(shí)際上就是圖像的相減運(yùn)算(又稱減影技術(shù)),是指把同一景物在不同時(shí)間拍攝的圖像或同一景物在不同波段的圖像相減。差值圖像提供了圖像間的差異信息,能用以指導(dǎo)動(dòng)態(tài)監(jiān)測(cè)、運(yùn)動(dòng)目標(biāo)檢測(cè)和跟蹤、圖像背景消除及目標(biāo)識(shí)別等。其算法流程如圖5-25所示。第116頁,課件共130頁,創(chuàng)作于2023年2月圖5-25差影法檢測(cè)變化目標(biāo)的流程圖第117頁,課件共130頁,創(chuàng)作于2023年2月差影法是非常有用的,比如在銀行金庫(kù)監(jiān)控系統(tǒng)中,攝像頭每隔一小段時(shí)間拍攝一幅圖像,并與上一幅圖像做差影。如果圖像差別超過了預(yù)先設(shè)置的閾值,說明有異常
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 漯河2024年河南漯河市委網(wǎng)信辦所屬事業(yè)單位人才引進(jìn)3人筆試歷年參考題庫(kù)附帶答案詳解
- 2025年中國(guó)小便盆市場(chǎng)調(diào)查研究報(bào)告
- 2025年中國(guó)單相共差模電涌保護(hù)器市場(chǎng)調(diào)查研究報(bào)告
- 2025年中國(guó)LED方形燈市場(chǎng)調(diào)查研究報(bào)告
- 2025至2031年中國(guó)銅徽章行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年海綿清潔塊項(xiàng)目可行性研究報(bào)告
- 2025年機(jī)械手式水冷碳氧槍系統(tǒng)項(xiàng)目可行性研究報(bào)告
- 2025年數(shù)控管端高速坡口機(jī)項(xiàng)目可行性研究報(bào)告
- 2025年山梨醇粉項(xiàng)目可行性研究報(bào)告
- 2025至2031年中國(guó)全牛皮工作手套行業(yè)投資前景及策略咨詢研究報(bào)告
- 生物光合作用第1課課件-2024-2025學(xué)年北師大版生物七年級(jí)上冊(cè)
- 人教版(PEP)英語六年級(jí)下冊(cè)-Unit 1 How tall are you?B Read and write 教案
- 風(fēng)險(xiǎn)分級(jí)管控和隱患排查治理體系培訓(xùn)考試試題(附答案)
- 生鮮超市未來工作計(jì)劃
- 北京市大興區(qū)2023-2024學(xué)年七年級(jí)下學(xué)期期中考試英語試卷
- 勞動(dòng)合同薪酬與績(jī)效約定書
- 消除醫(yī)療歧視管理制度
- JT-T-1180.2-2018交通運(yùn)輸企業(yè)安全生產(chǎn)標(biāo)準(zhǔn)化建設(shè)基本規(guī)范第2部分:道路旅客運(yùn)輸企業(yè)
- QCT848-2023拉臂式自裝卸裝置
- 2024交管12123駕照學(xué)法減分必考題庫(kù)附答案
- 腦脊液常規(guī)檢查
評(píng)論
0/150
提交評(píng)論