人教版小學1-6年級數(shù)學概念解釋大全_第1頁
人教版小學1-6年級數(shù)學概念解釋大全_第2頁
人教版小學1-6年級數(shù)學概念解釋大全_第3頁
人教版小學1-6年級數(shù)學概念解釋大全_第4頁
人教版小學1-6年級數(shù)學概念解釋大全_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

人教版小學1-6年級數(shù)學概念解釋大全

人教版小學1-6年級數(shù)學概念解釋大全要想學好數(shù)學,必須先理解數(shù)學概念。下面是數(shù)學中一些重要概念的解釋。一、整數(shù)部分十進制計數(shù)法是一種常用的計數(shù)方法,其中“一”是計數(shù)的基本單位,而“十”、“百”、“千”、“萬”等都是計數(shù)單位。每相鄰兩個計數(shù)單位之間的進率都是十。從高位一級一級讀整數(shù),讀出級名(億、萬)時,每級末尾都不讀。一個或連續(xù)幾個數(shù)位都只讀一個“零”。從高位一級一級寫整數(shù),若哪一位一個單位也沒有,就寫0。四舍五入法是一種求近似數(shù)的方法,當尾數(shù)最高位上的數(shù)比5小時,就舍去;當尾數(shù)最高位上的數(shù)是5或大于5時,就舍去尾數(shù)向前一位進1。二、小數(shù)部分小數(shù)是把整數(shù)1平均分成10份、100份、1000份等,這些分數(shù)可以用小數(shù)表示。小數(shù)點右邊第一位叫十分位,計數(shù)單位是十分之一(0.1);第二位叫百分位,計數(shù)單位是百分之一(0.01)等。小數(shù)部分最大的計數(shù)單位是十分之一,沒有最小的計數(shù)單位。小數(shù)部分有幾個數(shù)位,就叫做幾位小數(shù)。讀小數(shù)時,整數(shù)部分按照原來的讀法讀,小數(shù)點讀點,小數(shù)部分順序讀。小數(shù)點寫在個位右下角。小數(shù)末尾添去大小不變,可以化簡。小數(shù)點位置移動引起大小變化:右移擴大,左移縮小。比較小數(shù)大小,整數(shù)部分大就大;整數(shù)相同看十分位大就大,以此類推。三、分數(shù)和百分數(shù)分數(shù)是把單位“1”平均分成若干份,表示這樣的一份或者幾份的數(shù)。在分數(shù)里,表示把單位“1”平均分成多少份的數(shù),叫做分數(shù)的分母;表示取了多少份的數(shù),叫做分數(shù)的分子;其中的一份,叫做分數(shù)單位。百分數(shù)表示一個數(shù)是另一個數(shù)的百分之幾的數(shù),也叫百分率或百分比。百分數(shù)通常不寫成分數(shù)的形式,而用特定的“%”來表示。百分數(shù)一般只表示兩個數(shù)量關系之間的倍數(shù)關系,后面不能帶單位名稱。成數(shù)是指十分之幾。根據(jù)分子、分母和整數(shù)部分的不同情況,分數(shù)可以分成真分數(shù)、假分數(shù)、帶分數(shù)等種類。用于計算、比較和表示比例關系等方面.3.表示方式不同.百分數(shù)是以百分號“%”表示的,分數(shù)是以分數(shù)線“/”表示的.百分數(shù)可以轉化為分數(shù)或小數(shù),而分數(shù)也可以轉化為小數(shù)或百分數(shù).在實際應用中,需要根據(jù)具體情況選擇合適的表示方式.除法是一種運算,分數(shù)是一種數(shù)。因此,在敘述時應該說被除數(shù)相當于分子,而不是被除數(shù)就是分子。由于分數(shù)和除法有密切的關系,根據(jù)除法中“商不變”的性質(zhì),可以得出分數(shù)的基本性質(zhì)。分數(shù)的分子和分母都乘以或除以相同的數(shù)(除外),分數(shù)的大小不變,這叫做分數(shù)的基本性質(zhì),它是約分和通分的依據(jù)。最簡分數(shù)是指分子、分母互質(zhì)的分數(shù)。約分是把一個分數(shù)化成同它相等但分子、分母都比較小的分數(shù)。約分的方法是用分子和分母的公約數(shù)(1除外)去除分子、分母,通常要除到得出最簡分數(shù)為止。通分是把異分母分數(shù)分別化成和原來分數(shù)相等的同分母分數(shù)。通分的方法是先求出原來幾個分母的最小公倍數(shù),然后把各分數(shù)化成用這個最小公倍數(shù)作分母的分數(shù)。乘積是1的兩個數(shù)互為倒數(shù)。求一個數(shù)(除外)的倒數(shù),只要把這個數(shù)的分子、分母調(diào)換位置。1的倒數(shù)是1,0沒有倒數(shù)。在分母相同的分數(shù)中,分子大的那個分數(shù)就大。在分子相同的分數(shù)中,分母小的那個分數(shù)就大。在分母和分子都不同的分數(shù)中,通常是先通分,轉化成通分母的分數(shù),再比較大小。如果被比較的分數(shù)是帶分數(shù),先要比較它們的整數(shù)部分,整數(shù)部分大的那個帶分數(shù)就大;如果整數(shù)部分相同,再比較它們的分數(shù)部分,分數(shù)部分大的那個帶分數(shù)就大。百分數(shù)是“表示一個數(shù)是另一個數(shù)的百分之幾的數(shù)?!彼荒鼙硎緝蓴?shù)之間的倍數(shù)關系,不能表示某一具體數(shù)量。例如,可以說1米是5米的20%,但不能說“一段繩子長為20%米?!币虼?,百分數(shù)后面不能帶單位名稱。分數(shù)是“把單位‘1’平均分成若干份,表示這樣一份或幾份的數(shù)”。分數(shù)不僅可以表示兩數(shù)之間的倍數(shù)關系,如甲數(shù)是3,乙數(shù)是4,甲數(shù)是乙數(shù)的3/4;還可以表示一定的數(shù)量。百分數(shù)和分數(shù)的應用范圍不同。百分數(shù)在生產(chǎn)、工作和生活中,常用于調(diào)查、統(tǒng)計、分析與比較。而分數(shù)常用于計算、比較和表示比例關系等方面。百分數(shù)和分數(shù)的表示方式也不同。百分數(shù)是以百分號“%”表示的,分數(shù)是以分數(shù)線“/”表示的。在實際應用中,需要根據(jù)具體情況選擇合適的表示方式。稅率是應納稅額與各種收入的比率。利率是利息與本金的百分率。利息的計算公式是利息=本金×利率×時間。折數(shù)和成數(shù)可以與百分數(shù)互相轉化。例如,三折就是30%,七五折就是75%,一成就是10%,則六成五就是65%。特殊情況下幾個數(shù)的最大公約數(shù)和最小公倍數(shù):1.如果較大數(shù)是較小數(shù)的倍數(shù),較小數(shù)是較大數(shù)的約數(shù),則較大數(shù)是它們的最小公倍數(shù),較小數(shù)是它們的最大公約數(shù)。2.如果幾個數(shù)兩兩互質(zhì),則它們的最大公約數(shù)是1,最小公倍數(shù)是這幾個數(shù)的乘積。奇數(shù)和偶數(shù)的運算性質(zhì):1.相鄰兩個自然數(shù)之和是奇數(shù),之積是偶數(shù)。2.奇數(shù)+奇數(shù)=偶數(shù),奇數(shù)+偶數(shù)=奇數(shù),偶數(shù)+偶數(shù)=偶數(shù);奇數(shù)-奇數(shù)=偶數(shù),奇數(shù)-偶數(shù)=奇數(shù),偶數(shù)-奇數(shù)=奇數(shù),偶數(shù)-偶數(shù)=偶數(shù);奇數(shù)×奇數(shù)=奇數(shù),奇數(shù)×偶數(shù)=偶數(shù),偶數(shù)×偶數(shù)=偶數(shù)。整數(shù)、小數(shù)、分數(shù)四則混合運算:四則運算的法則:1.加法:對齊數(shù)位,從低位開始相加,滿十進一。對于同分母分數(shù),分母不變,分子相加;對于異分母分數(shù),先通分再相加。2.減法:對齊數(shù)位,從低位開始相減,不夠減則退一當十再減。對于同分母分數(shù),分母不變,分子相減;對于異分母分數(shù),先通分再相減。3.乘法:用乘數(shù)每一位上的數(shù)去乘被乘數(shù),得數(shù)的末位就和哪一位對齊,最后把積相加。對于分數(shù),分子相乘的積作分子,分母相乘的積作分母。能約分的先約分,結果要化簡。4.除法:除數(shù)有幾位,就看被除數(shù)的前幾位(不夠就多看一位),除到被除數(shù)的哪一位,商就寫到哪一位上。對于除數(shù)是小數(shù)的情況,先化成整數(shù)再除。甲數(shù)除以乙數(shù)(除外),等于甲數(shù)除以乙數(shù)的倒數(shù)。運算定律:加法交換律:a+b=b+a結合律:(a+b)+c=a+(b+c)減法性質(zhì):a-b-c=a-(b+c),a-(b-c)=a-b+c乘法交換律:a×b=b×a結合律:(a×b)×c=a×(b×c)分配律:(a+b)×c=a×c+b×c除法性質(zhì):a÷(b×c)=a÷b÷c,a÷(b÷c)=a÷b×c,(a+b)÷c=a÷c+b÷c,(a-b)÷c=a÷c-b÷c商不變性質(zhì):m≠0,a÷b=(a×m)÷(b×m)=(a÷m)÷(b÷m)積的變化規(guī)律:在乘法中,一個因數(shù)不變,另一個因數(shù)擴大(或縮小)若干倍,積也擴大(或縮?。┫嗤谋稊?shù)。推廣:一個因數(shù)擴大A倍,另一個因數(shù)擴大B倍,積擴大AB倍。一個因數(shù)縮小A倍,另一個因數(shù)縮小B倍,積縮小AB倍。商不變規(guī)律:當被除數(shù)和除數(shù)同時擴大(或縮?。┫嗤谋稊?shù)時,商不變。同樣地,當被除數(shù)擴大(或縮?。〢倍,除數(shù)不變時,商也擴大(或縮?。〢倍。但當被除數(shù)不變,除數(shù)擴大(或縮小)A倍時,商反而縮小(或擴大)A倍。利用積的變化規(guī)律和商不變規(guī)律性質(zhì)可以使一些計算簡便。但在有余數(shù)的除法中要注意余數(shù)。例如,8500÷200可以把被除數(shù)和除數(shù)同時縮小100倍來除,即85÷2=,商不變。但此時的余數(shù)1是被縮小100倍后的,所以還原成原來的余數(shù)應該是100。用字母表示數(shù)是代數(shù)的基本特點,既簡單明了,又能表達數(shù)量關系的一般規(guī)律。在數(shù)字與字母、字母和字母相乘時,乘號可以簡寫成“?“或省略不寫。但是,數(shù)與數(shù)相乘時,乘號不能省略。當1和任何字母相乘時,“1”省略不寫。數(shù)字和字母相乘時,將數(shù)字寫在字母前面。在求含有字母的式子的值或利用公式求值時,應注意書寫格式。含有未知數(shù)的等式叫方程。判斷一個式子是不是方程應具備兩個條件:一是含有未知數(shù);二是等式。所以,方程一定是等式,但等式不一定是方程。使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。求方程的解的過程叫做解方程。在列方程解文字題時,如果題中要求的未知數(shù)已經(jīng)用字母表示,解答時就不需要寫設。否則,首先將所求的未知數(shù)設為x。解方程的方法有四種:直接運用四則運算中各部分之間的關系去解,將含有未知數(shù)x的項看作一個數(shù),按四則運算順序先計算,使方程變形,然后再解,利用運算定律或性質(zhì),使方程變形,然后再解。比和比例應用題需要注意題目中所給出的比例關系,然后根據(jù)題目的要求進行計算。在工業(yè)生產(chǎn)和日常生活中,常常需要按照一定的比例來進行數(shù)量的分配,這種分配方法通常被稱為“按比例分配”。解決按比例分配的問題時,需要找到分配的總量和分配的比例,然后將比例轉化為分數(shù)或份數(shù)來進行解答。在正、反比例應用題中,需要先審題,找出題目中相關聯(lián)的兩個量,然后分析判斷這兩個量是成正比例關系還是成反比例關系。接著設未知數(shù),列比例式,解決比例式,最后檢驗并寫出答案。在數(shù)學教學中,培養(yǎng)學生的數(shù)感是非常重要的。數(shù)感是指學生具有應用數(shù)字表示具體的數(shù)據(jù)和數(shù)量關系的能力,能夠判定不同的算術運算,有能力進行計算,并具有選擇適當方法(心算、筆算、使用計算器)實施計算的經(jīng)驗。同時,數(shù)感還可以讓學生根據(jù)數(shù)據(jù)進行推論,并對數(shù)據(jù)和推論的精確性和可靠性進行檢驗。培養(yǎng)數(shù)感可以幫助學生學會數(shù)學地思考,理解和解釋現(xiàn)實問題,提高學生提出問題和解決問題的能力。數(shù)概念本身是抽象的,學生理解和掌握數(shù)的概念需要經(jīng)過一個過程。讓學生在認識數(shù)的過程中,更多地接觸和經(jīng)歷有關的情境和實例,可以讓學生更具體、更深刻地把握數(shù)的概念,建立數(shù)感。在認識數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論