數(shù)字圖像處理圖像增強(qiáng)課件_第1頁
數(shù)字圖像處理圖像增強(qiáng)課件_第2頁
數(shù)字圖像處理圖像增強(qiáng)課件_第3頁
數(shù)字圖像處理圖像增強(qiáng)課件_第4頁
數(shù)字圖像處理圖像增強(qiáng)課件_第5頁
已閱讀5頁,還剩44頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第四章數(shù)字圖像處理2.圖像增強(qiáng)ImageEnhancement:TheimagewillbesignificantlyimprovedifoneormoreofthefunctionscalledEnhancementareapplied.圖像增強(qiáng):突出相關(guān)的專題信息,提高圖像的視覺應(yīng)用,使分析者更容易識(shí)別圖像內(nèi)容,從圖像中提取更有用的定量化信息; 輻射增強(qiáng)、空間增強(qiáng)以及光譜增強(qiáng)(變換)遙感影像灰度的頻率分布輻射增強(qiáng)遙感影像灰度的頻率分布CommonSymmetricandSkewedDistributionsinRSDataCommonly,thedistributionofDNs(graylevels)canbeunimodalandmaybeGaussian,althoughskewingisusual.Multimodaldistributionsresultifascenecontainstwoormoredominantclasseswithdistinctlydifferent(oftennarrow)rangesofreflectance.Min-Max

ContrastStretch+1StandardDeviationContrastStretchLinearexpansionofDN'sintothefullscale(0-255)isacommonoption.對(duì)比度拉伸

Thestartingpointistopointoutthatradiancesmeasuredbythesensorsvaryinintensity.Thevaluesarerestatedas(DNs)thatconsistofequalincrementsoverarange.ThesimplestmanipulationoftheseDNsistoincreaseordecreasetherangeofDNspresentandassignthisnewrangethegraylevelsavailablewithintherangelimit.LinearContrastEnhancement:Minimum-MaximumContrastStretchwhere:-BVinistheoriginalinputbrightnessvalue-quantkistherangeofthebrightnessvaluesthatcanbedisplayedontheCRT(e.g.,255),minkistheminimumvalueintheimage,

maxkisthemaximumvalueintheimage,and

BVoutistheoutputbrightnessvalueContrastStretchof

Landsat

TMBand4DataOriginalMinimum-maximum+1standarddeviationAllotheroriginalbrightnessvaluesbetween5and104arelinearlydistributedbetween0and255.LinearContrastEnhancement:Minimum-MaximumContrastStretchOriginalLinearNon-linearContrastStretchingThesearemostlynonlinearfunctionsthataffecttheprecisedistributionofdensities(onfilm)orgraylevels(inmonitorimage)indifferentways,sothatsomeexperimentationmayberequiredtooptimizeresults.Commonlyusedspecialstretchesinclude:1)PiecewiseLinear,2)LinearwithSaturation3)Logarithmic,4)Exponential5)ProbabilityDistributionFunction,and…LogarithmicandInverseLogPiecewisePiecewiseLinearContrastStretchingContrastStretchingofPredawnThermalInfraredDataofthetheSavannahRiverOriginalMinimum-maximum+1standarddeviation

LinearwithSaturationHistogramEqualization直方圖均衡

evaluatestheindividualbrightnessvaluesinabandofimageryandassignsapproximatelyanequalnumberofpixelstoeachoftheuser-specifiedoutputgray-scaleclasses(e.g.,32,64,and256).

appliesthegreatestcontrastenhancementtothemostpopulatedrangeofbrightnessvaluesintheimage.

reducesthecontrastintheverylightordarkpartsoftheimageassociatedwiththetailsofanormallydistributedhistogram.Statisticsfora64x64HypotheticalImagewithBrightnessValuesfrom0to74096totalHistogramEqualization5TransformationFunction,

ki

foreachindividualbrightnessvalueForeachbrightnessvaluelevelBViinthequantkrangeof0to7oftheoriginalhistogram,anewcumulativefrequencyvaluekiiscalculated:wherethesummationcountsthefrequencyofpixelsintheimagewithbrightnessvaluesequaltoorlessthanBVi,andnisthetotalnumberofpixelsintheentirescene(4,096inthisexample).Thehistogramequalizationprocessiterativelycomparesthetransformationfunctionkiwiththeoriginalvaluesofli,todeterminewhichareclosestinvalue.Theclosestmatchisreassignedtotheappropriatebrightnessvalue.

Forexample,weseethatk0

=

0.19isclosesttoL1=0.14.Therefore,allpixelsinBV0(790ofthem)willbeassignedtoBV1.Similarly,the1023pixelsinBV1willbeassignedtoBV3,the850pixelsinBV2willbeassignedtoBV5,the656pixelsinBV3willbeassignedtoBV6,the329pixelsinBV4willalsobeassignedtoBV6,andall448brightnessvaluesinBV5–7willbeassignedtoBV7.Thenewimagewillnothaveanypixelswithbrightnessvaluesof0,2,or4.Thisisevidentwhenevaluatingthenewhistogram.Whenanalystsseesuchgapsinimagehistograms,itisusuallyagoodindicationthathistogramequalizationorsomeotheroperationhasbeenapplied.OriginalHistogramequalizationSpecificpercentagelinearcontraststretchdesignedtohighlightthethermalplumeSpatialFilteringtoEnhanceLow-andHigh-FrequencydetailandEdgesSpatialfrequency,thenumberofchangesinbrightnessvalueperunitdistanceforanyparticularpartofanimage.空間增強(qiáng)SpatialfrequencyinRSimagerymaybeenhancedorsubduedusingspatialconvolutionfiltering

(卷積)

basedprimarilyontheuseofconvolutionmasks.VariousConvolutionMaskKernelsThesizeoftheneighborhoodconvolutionmaskorkernel(n)isusually3x3,5x5,7x7,or9x9.

SpatialConvolutionFiltering:MedianFilterAmedianfilterhascertainadvantageswhencomparedwithweightedconvolutionfilters,including:1)itdoesnotshiftboundaries,and2)theminimaldegradationtoedgesallowsthemedianfiltertobeappliedrepeatedlywhichallowsfinedetailtobeerasedandlargeregionstotakeonthesamebrightnessvalue(oftencalledposterization).SpatialFrequencyFilteringSpatialConvolutionFiltering:MinimumorMaximumFiltersOperatingononepixelatatime,thesefiltersexaminethebrightnessvaluesofadjacentpixelsinauser-specifiedradius(e.g.,3x3pixels)andreplacethebrightnessvalueofthecurrentpixelwiththeminimumormaximumbrightnessvalueencountered,respectively.SpatialFrequencyFilteringWewillconstrainourdiscussionto3x3convolutionmaskswithninecoefficients,ci,definedatthefollowinglocations: c1c2c3Masktemplate= c4c5c6 c7c8c9SpatialConvolutionFiltering111111111Alinear

spatialfilterisafilterforwhichthebrightnessvalue(BVi,j,out)atlocationi,jintheoutputimageisafunctionofsomeweightedaverage(linearcombination)ofbrightnessvalueslocatedinaparticularspatialpatternaroundthei,jlocationintheinputimage.Thecoefficients,c1,inthemaskaremultipliedbythefollowingindividualbrightnessvalues(BVi)intheinputimage: c1xBV1c2xBV2c3xBV3Masktemplate= c4xBV4c5xBV5c6xBV6 c7xBV7c8xBV8c9xBV9TheprimaryinputpixelunderinvestigationatanyonetimeisBV5=BVi,jSpatialConvolutionFiltering111111111SpatialConvolutionFiltering:LowFrequencyFilterSpatialFrequencyFilteringSpatialConvolutionFiltering:HighFrequencyFilterHigh-passfilteringisappliedtoimagerytoremovetheslowlyvaryingcomponentsandenhancethehigh-frequencylocalvariations.Onehigh-frequencyfilter(HFF5,out)iscomputedbysubtractingtheoutputofthelow-frequencyfilter(LFF5,out)fromtwicethevalueoftheoriginalcentralpixelvalue,BV5:SpatialFrequencyFilteringSpatialConvolutionFiltering:Unequal-weightedsmoothingFilter0.250.500.250.5010.500.250.500.25111121111SpatialConvolutionFiltering:EdgeEnhancementFormanyRSEarthscienceapplications,themostvaluableinformationthatmaybederivedfromanimageiscontainedintheedgessurroundingvariousobjectsofinterest.Edgeenhancementdelineatestheseedgesandmakestheshapesanddetailscomprisingtheimagemoreconspicuousandperhapseasiertoanalyze.Edgesmaybeenhancedusingeitherlinearornonlinearedgeenhancementtechniques.SpatialConvolutionFiltering:DirectionalFirst-DifferenceLinearEdgeEnhancementTheresultofthesubtractioncanbeeithernegativeorpossible,thereforeaconstant,K(usually127)isaddedtomakeallvaluespositiveandcenteredbetween0and255SpatialConvolution

Filtering:

High-passFiltersthatAccentuateorSharpenEdges-1-1-1-19-1-1-1-11-21-25-21-21SpatialConvolutionFiltering:

LinearEdgeEnhancement-Embossing00010-1000EmbossEast001000-100EmbossNWSpatialFrequencyFiltering0-10-14-10-10-1-1-1-18-1-1-1-11-21-24-21-211111-71111SpatialConvolutionFiltering:EdgeEnhancementTheLaplacianisasecondderivativeandisinvarianttorotation,meaningthatitisinsensitivetothedirectioninwhichthediscontinuities(point,line,andedges)run.SpatialFrequencyFilteringPrincipalComponentsAnalysis

transformationoftherawremotesensordatausingPCAcanresultinnewprincipalcomponentimagesthatmaybemoreinterpretablethantheoriginaldata.

mayalsobeusedtocompresstheinformationcontentofanumberofbandsofimagery(e.g.,sevenTMbands)intojusttwoorthreetransformedprincipalcomponentimages.Theabilitytoreducethedimensionality(i.e.,thenumberofbands)fromntotwoorthreebandsisanimportanteconomicconsideration,especiallyifthepotentialinformationrecoverablefromthetransformeddataisjustasgoodastheoriginalremotesensordata.光譜增強(qiáng)與變換Thespatialrelationshipbetweenthefirsttwoprincipalcomponents:(a)Scatter-plotofdatapointscollectedfromtworemotelybandslabeledX1andX2withthemeansofthedistributionlabeledμ1andμ2.(b)AnewcoordinatesystemiscreatedbyshiftingtheaxestoanX

system.ThevaluesforthenewdatapointsarefoundbytherelationshipX1=X1–μ1andX2=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論