




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
TheEconomicBenefitsofAutomatingCapacityOptimizationinIPNetworks
PeterFetterolf,Ph.D.
TheEconomicBenefitsofAutomatingCapacity
OptimizationinIPNetworks
EXECUTIVE
SUMMARY
Internettrafficcontinuestogrowatarapidrateyearoveryear.Trafficgrowthisdrivenbyrecenttechnologiessuchas5GandfibertothehomeandalsonewapplicationssuchasAR/VR,cloudgaming,andvideoconferencing.IPaggregationandcorenetworkscarrythebulkofInternettraffic,andtheyaretypicallydesignedasmeshnetworkswithmultiplepathsconnectinganoriginwithadestinationsite.IntraditionalIPnetworkswithshortestpathroutingprotocols,networksareparticularlygoodatreroutingtrafficaroundlinkornodefailuresbutareveryineffectiveatoptimizinglinkutilization.Manycommunicationserviceproviders(CSPs)haveusedabruteforceapproachtonetworkcapacityplanningbyallocatingextrabandwidthtolinkstoensurethereisadequatebandwidthavailabletosupportunexpectedburstsoftrafficorshort-termtrafficgrowth.Typically,CSPswillengineernetworklinkssuchthataverageutilizationis50%orless.
Asnetworklinksgrowfrom100GEto400GEandlargeritisbecomingmoreimportanttouseautonomouscapacityoptimizationtooptimizenetworklinkcapacity.Linksthatareunderutilizedcansupportmoretraffic;linksthatareoverutilizationshouldsupportlesstraffic.InthispaperwepresentasolutiontothisproblemusingtheJuniperNetworksParagonAutomation,whichisanetworkautomationsuitethatincludesaPathComputationEngine(PCE)thatsimplifiestrafficengineering,makingitpossibletoleveragebenefitsprovidedbytransportservicepaths,suchasMPLS/RSVP,segmentrouting,andnetworkslicing.Itenablesoperationteamstomanagestricttransportservicelevelagreements(SLAs)moreefficientlyanddynamicallythroughautomatedplanning,provisioning,proactivemonitoring,andoptimizationoflargetrafficloadsbasedonuser-definedconstraints.Withthisautomation,operatorscanruntheirnetworkshigherutilizationwhileachievingpredictability,resiliency,andSLAguaranteesinserviceproviders’,cloudproviders’,andlargeenterprises’networks.OurstudyshowsthatParagonAutomationcanhelpoperatorsincreaseaveragelinkutilizationfrom50%to70%orhigher.
Autonomouscapacityoptimizationisevenmoreimportanttodaybecausesiliconshortageshaveresultedinsupplychainproblems.IncreasingnetworkcapacityrequiresCSPstoordernewcomponentsthataredeliveredviathesupplychain.
2
TheEconomicBenefitsofAutomatingCapacityOptimizationinIPNetworks
Delaysinthesupplychaincouldresultininadequatenetworkcapacity,causingseriousnetworkperformanceproblemsaswellasSLAviolations.InthispaperwepresenttheresultsofanACG
businessmodelthatcomparestwoscenarios:
?WithParagonAutomation
?Usingbrute-forcecapacitymanagement
Thetotalcostofownership(TCO)andreturnoninvestment(ROI)modelcomparesthecapitalexpenseandoperationsexpensesofahypotheticalnetworkandshowssignificantsavingsusingaPCEtooptimizetrafficengineering.ThecostofnetworkbandwidthisexceedinglyhighsuchthatTCOsavingsinoptimizingthenetworkpayforParagonAutomationmanytimesover.OurresultsshowanoverallTCOsavingsof27%.Wealsoshowthatevenaminorincreaseinaveragenetworkutilizationof0.5%willpayforthetotalcostoftheinvestmentinParagonAutomation.
NetworkChallenges
Overthelast20yearstheimportanceoftheInternethascontinuedtogrow,andtodaytheInternetisanessentialutilityformostbusinesses,households,andconsumers.ThePandemichasonlyamplifiedtheimportanceofInternetconnectivityaslargenumbersofbusinesses,schools,anduniversitiesmovedtoremoteworkandlearningovernight.
Internetconnectivityisprovidedbycommunicationserviceproviders(CSPs)onasetofdiverse,interconnectednetworks.MostCSPs’networksuseahierarchicalarchitectureconsistingofaccess,aggregation,andcorenodestoprovidenetworkmesharchitecture.ThemeshprovidesdiversepathsfromorigintodestinationthatallowsforresiliencyandscalabilityforIPservices.Typically,provideredge(PE)routersareusedattheedgeofthenetworktoprovideaninterfacebetweenacustomer’snetworkandtheCSP’snetwork.ThePErouterprovidesmultipleIPservicestoendcustomers.PEroutersgenerallyconnecttocoreroutersthatareoptimizedforhigh-speedIPtransportandscalability.CorerouterstypicallydonotprovidethesamelevelofservicesasPErouters.AnothercriticalcomponentofmostIPnetworksarepeeringnodes.ThesearerouterstheconnectaCSP’snetworktootherCSPs’networksusingtheBGProutingprotocol.PeeringnodesandBGPallowtheinterconnectionofmultiplenetworksintotheglobalinternet.
AnexampleofanIPmeshnetworkisprovidedinFigure1.ThenetworkconsistsofPErouters,corerouters,andpeeringroutersconnectedinamesh.Thebenefitsofthemesharethatifalinkornodefails,trafficcanbereroutedacrossadiversepath.Additionally,itispossibletousesophisticatedtrafficengineeringtechniquestooptimizelinkcapacityutilizationwhilemaintainingservicelevelagreements(SLAs)forIPservices.
3
PeeringNode
CoreNode
PENode
TheEconomicBenefitsofAutomatingCapacity
OptimizationinIPNetworks
Figure1.ExampleofanIPMeshNetwork
Networktrafficengineeringisbecomingincreasinglyimportantbecauseofthetremendousgrowthintrafficdrivenbyinnovativetechnologiesandapplications.ManyCSPshaveconvergedtheirIPnetworkstoprovidetransportformobile,business,andresidentialtraffic.Someofthekeydriversfortrafficgrowthare:
Mobiletrafficgrowth
?LTEmigrationtoDSS:averagecellsitetrafficincreasesfrom300Mbpsto700Mbps
?LTEmigrationto5G:averagecellsitetrafficincreasesto2.8Gbps
Businesstrafficgrowth
?Videoconferencingcontinuedgrowthduetothepandemic
?Videotraining
?AR/VRandothernewapplicationsaredrivingbandwidthgrowth
?EdgecomputingdrivingnewtrafficforIndustry4.0applications
Residentialtrafficgrowth
?SmartTVsandvideostreaming
?4K/8KTV
?Workathomewithvideoconferencing
?Cloudgaming
?Diversemixofdevices:laptops,smartphones,tablets,gamingconsoles,andsmartTVs
4
TheEconomicBenefitsofAutomatingCapacityOptimizationinIPNetworks
ACGprojectsaveragehouseholdtrafficof14.2Mbpsin2022growingto20.1Mbpsin20251.However,notalltrafficiscreatedequally.Diversesetsofapplicationshavedifferentrequirements:
?Delay-andjitter-sensitiveapplications
?High-availabilityapplications
?Bandwidth-intensiveapplications
?Best-effortapplications
Mostnetworksdonothavethecapabilitytodifferentiateservicesfortheseapplications,butmovingforwarddifferentiatedserviceswithSLAswillgrowinimportance,especiallyforbusinessandIndustry4.0applicationsandservices.
Trafficgrowthisdrivingnetworkcapacitygrowth.CSPshavetwooptions,brute-forcecapacityandintelligenttrafficengineeringandtrafficoptimization,tomanagenetworkcapacitygrowth.
Brute-ForceCapacityManagement
CSPscancontinuetouseshortestpathroutingwithminimaltrafficengineeringanduseabrute-forceapproachtoaddingcapacity.ThisrequiresCSPstomanagecapacitysuchthataveragelinkutilizationsare50%orlower.Thisallowsnetworkstomanagetrafficburstsandeventswithlargerthanexpecteddemand.Someofthedownsidestothisapproachare:
?Addingnetworkcapacitycantakemonths;settinglinkutilizationsto50%orlowerallowsCSPstimetoupgradethenetwork
?Underutilizedlinkscreatelargeandunnecessaryexpensesinnetworkbandwidth
IntelligentTrafficEngineeringandTrafficOptimization
Alternatively,CSPscanusenetworkintelligencetooptimizenetworkcapacityandrouting,reducingtheneedtoupgradenetworkcapacityandprovidingsignificantsavingsinnetworkcapitalexpense(CapEx)andoperationexpense(OpEx).AnexampleofthisapproachistheJuniperParagonAutomationsolution.
Giventhegrowthofnetworktraffic,autonomouscapacityoptimizationprovidesCSPswithopportunitiesto:
?MinimizelinkcapacityCapExandOpEx
?Supporttrafficgrowthandseasonaltrafficbursts
?Expandtonewmarkets
1/reports/middle-mile-networks-capacity-requirements-for-fix/
5
TheEconomicBenefitsofAutomatingCapacity
OptimizationinIPNetworks
AutonomousCapacityOptimization
JuniperParagonAutomationprovidesacomprehensivesolutiontonetworkoptimizationandcapacitymanagement.ThekeyfinancialbenefitsofParagonAutomationthatareconsideredinthepaperare:
?Optimizingnetworklinkcapacity,whichreducesbothCapExandOpEx
?Simplifyingnetworkoperations,whichreduceslaborOpEx
ParagonAutomationenablesCSPstosimplify,automate,andoptimizetrafficengineeringusingacentralizedcloud-nativecontroller.Networkpathdesign,provisioning,andmanagementarefullyautomatedusingcentralizedpathcalculationwithacompleteviewofthenetworktopologyandreal-timetraffic.Withthisautomation,operatorscanincreasesignificantlytheutilizationoftheirnetworkswhileachievingpredictability,resiliency,andservice-levelguaranteesinserviceproviders’,cloudproviders’,andlargeenterprises’networks.TheworkflowinParagonisdepictedinFigure2.ThekeyprocessesimplementedbyParagonare:
?Deploy:Automaticallyconfigureandprovisionthenetworkusingsegmentroutingand/orMPLS-TEtooptimizetransportwhilemaintainingSLAs
?Monitor:On-goingmonitoringofnetworkperformanceandSLAs
?Analyze:Discovernetworktopology,routing,traffic,andservicerequirements
?Optimize:Optimalpathcomputationbasedonnetworktopology,traffic,andservicerequirements
Figure2.AutonomousCapacityOptimizationWorkflow
Thenextsectionsprovidesanoverviewofabusinessmodelthatshowsthefinancialbenefitsandreturnoninvestment(ROI)ofdeployingParagonAutomationinaCPS’smedium-sizenetwork.
6
TheEconomicBenefitsofAutomatingCapacityOptimizationinIPNetworks
BusinessModelFrameworkandAssumptions
ACGResearchdevelopedadetailedTCOandROImodeltoanalyzethecostsavingsandROIfordeployingParagonAutomation.ThekeybenefitsarereducingCapExandOpExassociatedwithnetworkcapacityandreducinglaborexpenses,whicharerequirementsfornetworkoperationsandmanagement.
Inouranalysiswecomparetwoscenarios:
?WithJuniperNetworksautonomoustrafficoptimization
?Usingbrute-forcecapacitymanagement
Inanetworkwithbrute-forceapproachtocapacityplanninghasanaveragenodelinkandpeeringlinkutilizationof50%.Thisisbecausenetworktrafficishighlybursty.ToguaranteeSLAsforhigh-prioritytrafficthereneedstobeextracapacitytoallowfortrafficburstsaswellasunexpectedtrafficgrowth.Inanetworkwithautonomoustrafficoptimizationweassumecentraltrafficengineeringandoptimizationallowslinksandpeeringpointstorunwithhigherutilization.ThisisbecauseParagonAutomationwillautomaticallyrerouteandoptimizetraffictoguaranteeSLAswhilealsorunningthelinkswithhigherutilization.Inouranalysisweconsiderseveralscenariosforlinkcapacityimprovement,depictedinTable1.Eachnetworkisunique,andsomenetworkswillachievegreaterimprovementsinlinkutilizationthanothers.Forthisreasonweconsidersixscenarioswherelinkutilizationimprovesfrom5%upto30%.
BaseLinkUtilizationwithno
LinkUtilizationwithAutonomous
Utilization
Optimization
CapacityOptimization
Improvement
50%
55%
5%
50%
60%
10%
50%
65%
15%
50%
70%
20%
50%
75%
25%
50%
80%
30%
Table1.ScenariosforLinkUtilizationImprovement
7
TheEconomicBenefitsofAutomatingCapacity
OptimizationinIPNetworks
Wemodelahypotheticalmeshnetworkconsistingof35nodes,depictedinTable2.
NodeType
PENodes
CoreNodes
PeeringNodes
Quantity
9
21
5
Table2.BreakdownofNodeTypesinHypotheticalNetwork
ProviderEdge(PEnodesarethepointsdemarcationwheretheCSP’snetworkinterfaceswithacustomerorenterprise’sIPnetwork.ThePEroutersprovideedgeIPservices,andthecostperportofPEroutersistypicallyhigherthanthecostperportofcorerouters,whichareprimarilyusedforIPtransport.PeeringnodesareusedtointerconnectwithotherCSPsandtheglobalInternetusingtheBGPprotocol.Peeringnodesaretypicallyscalablehigh-capacitynodessimilartocorenodes.
Weassumethenetworksupportsmobile,business,andresidentialbroadbandserviceswiththeexpectationsfordemand,presentedinTable3.Trafficisdrivenbythenumberofendpoints(basestations,businessservices,andbroadbandsubscribersandthetrafficperendpoint.OurmodelassumestrafficgrowthdrivenbytheinputsinTable3.
DemandInput
Year1
Year2
Year3
Year4
Year5
NumberofBaseStationsperNode
500
550
600
650
700
MobileTrafficperBaseStation(Mbps)
300
800
2000
2400
2600
NumberofBusinessServicesperNode
150
200
250
300
350
BusinessServiceTraffic(Mbps)
200
300
350
400
450
NumberofBroadbandSubscribersperNode
15000
18000
20000
22000
25000
AverageTrafficperBroadbandSubscriber(Mbps)
13
14.5
16
18
20.1
Table3.TrafficDemandAssumptions
8
TheEconomicBenefitsofAutomatingCapacityOptimizationinIPNetworks
Tocalculatethecostofnetworkcapacitywithandwithoutautonomouscapacityoptimizationwealsouseassumptionsforthecostofrouterports,opticaltransport,andmonthlypeeringexpenses.Specifically,weaccountfor:
?100GEand400GEPErouterportexpenses
?100GEand400GEcorerouterportexpenses
?100GEand400GEopticalunderlayexpenses
?Monthlypeeringexpenses
Inadditiontonetworkcapacityexpenseswealsoconsiderlaboroperationalexpenses.Weexaminethecostofnetworkcapacityplanningandoperationsfull-timeequivalents.ThefinancialmodelcalculatestheTCO(CapExandOpEx)ofanetworkwithandwithoutParagonAutomationandalsocalculatestheROIofaninvestmentinParagonAutomation.
BusinessCaseResults
ForthenetworkconfigurationanddemandspecifiedinTable2andTable3wehavecalculatedtheTCOsavingsforsixutilizationscenarioswithandwithoutautonomouscapacityoptimizationasspecifiedinTable1.Thecumulativefive-yearTCOsavingsforeachscenarioisdepictedinFigure3.ThisanalysisshowsthatregardlessoftheleveloflinkutilizationimprovementssignificantTCOsavingscanbeachieved.AslinkcapacityutilizationimprovesTCOsavingscontinuetogrow.
ThesavingsoflinkcapacityimprovementsareextremelyhighcomparedtothecostofdeployingParagonAutomation.Wedeterminedthatwithanaveragelinkcapacityimprovementof0.5%theTCOsavingswillpayforthecostofParagonAutomation.ThecostofParagonAutomationincludes:
?Paragonautomationsoftwarelicenses
?JuniperprofessionalservicestodeployParagonAutomation
?Operator'slaborexpensestodeployParagonAutomation
9
TheEconomicBenefitsofAutomatingCapacity
OptimizationinIPNetworks
Figure3.Five-YearTCOSavingsforDifferentLevelsofLinkCapacityImprovement
Inthespecificscenariowherelinkutilizationimprovesfrom50%to70%moredetailispresentedontheTCOresults.Specifically,thecumulativeTCOresultscomparingthetwoscenarioswithandwithoutParagonAutomationaresummarizedinTable4.
Five-YearCumulativeResults
CapEx
OpEx
TCO
WithParagonAutomation
$17,507,864
$19,292,103
$36,799,967
WithoutParagonAutomation
$24,518,712
$26,014,899
$50,533,611
Savings
$7,010,848
$6,722,796
$13,733,644
SavingsPercentage
29%
26%
27%
Table4.Five-YearCumulativeTCOResultswithandwithoutParagonAutomation
TheannualTCOspendcomparisonfornetworkswithandwithoutParagonAutomationarepresentedinFigure4.TheincreaseinTCOfromYear1toYear5isdrivenbythegrowthinnetworktrafficspecifiedinTable3.Astrafficgrowsthebenefitofautonomouscapacityoptimizationbecomesincreasinglymoreimportant.ThismeansthatthebenefitofParagonAutomationwillbegreaterinthefutureastrafficandnetworkcapacitycontinuetogrow.
10
TheEconomicBenefitsofAutomatingCapacityOptimizationinIPNetworks
Millions
$14
$12
$10
$8
$6
$4
$2
AnnualTCOComparison
$16
$-
Year3
Year1
Year4
Year5
Year2
TCOwithParagonAutomationTCOwithoutParagonAutomation
Figure4.AnnualTCOComparisonofNetworkswithandwithoutParagonAutomation
AbreakdownofTCOexpensesispresentedinFigure5.ThisbreakdownshowsthekeydriversofexpenseandsubsequentTCOsavingsarePEandcorerouter100GEand400GEportCapExandpeeringlinktransportOpEx.TherouterportCapExsavingsareadirectresultofrunningthelinkswithhigherutilization,andthepeeringnodeOpExsavingsresultfromoptimizingtrafficdistributiontopeeringsites.ThetotalcostofdeployingParagonAutomationissmallincomparisonwiththesavings.
ParagonAutomationExpenses
Power&CoolingOpEx
LaborOpEx
PeeringLinkTransportOpEx
OpticalLinkCapEx
PeeringNodeLinkCapEx
GeneralNodeLinkCapEx
FiveYearCumulativeCostBreakdown
$-
$20
$25Millions
$5$10
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025云南省建筑安全員知識(shí)題庫
- 鄭州工業(yè)安全職業(yè)學(xué)院《大數(shù)據(jù)快速運(yùn)算》2023-2024學(xué)年第二學(xué)期期末試卷
- 遼寧裝備制造職業(yè)技術(shù)學(xué)院《醫(yī)學(xué)微生物學(xué)實(shí)驗(yàn)轉(zhuǎn)專業(yè)》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東管理學(xué)院《診斷胸肺檢查》2023-2024學(xué)年第二學(xué)期期末試卷
- 廣州城建職業(yè)學(xué)院《電子商務(wù)技術(shù)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 太原科技大學(xué)《城市規(guī)劃與管理》2023-2024學(xué)年第二學(xué)期期末試卷
- 玉溪職業(yè)技術(shù)學(xué)院《軋制工藝學(xué)管材生產(chǎn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 商丘職業(yè)技術(shù)學(xué)院《表面活性劑化學(xué)與應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷
- 五年級(jí)教師2025年第一季度工作計(jì)劃
- 做賬實(shí)操-商貿(mào)企業(yè)成本核算方法
- 《小紅帽》繪本故事-課件
- 寒假日常生活勞動(dòng)清單及評(píng)價(jià)表
- 專題06 現(xiàn)代文閱讀(原卷版)2015-2024單招考試語文(四川真題)
- 校園超市招商政策
- 《數(shù)據(jù)采集技術(shù)》課件-網(wǎng)絡(luò)爬蟲
- 網(wǎng)絡(luò)地址轉(zhuǎn)換NAT
- 【MOOC】營(yíng)養(yǎng)學(xué)-武漢大學(xué) 中國(guó)大學(xué)慕課MOOC答案
- 工資薪金管理制度模版(3篇)
- 廣東省茂名市高州市五校聯(lián)考2024-2025學(xué)年高一上學(xué)期12月月考化學(xué)試題(含答案)
- 高等數(shù)學(xué)(二)(山東聯(lián)盟)知到智慧樹章節(jié)測(cè)試課后答案2024年秋青島科技大學(xué)
- 《高級(jí)算法設(shè)計(jì)》課件 第2章 高級(jí)圖算法
評(píng)論
0/150
提交評(píng)論