




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
壽命壽命硅負采材料
Silicon
anode
with
life
cycle
lifeProf.XinpingQiuDepartmentofChemistry,TsinghuaUniversityBeijing,100084,China壽命壽命硅負采材料
Siliconanodewithl8/15/2023DifficultiesforsiliconanodeapplicationLargevolumeexchangeleadtostructuralfailureofelectrodeRelativelowconductivityandrateperformanceElectronnumberEnergydensityMolecularmassSi:4200mAh/g2Multielectronreactionmaterials7/31/2023Difficultiesforsili8/15/2023J.R.Dahn,Electrochem.Solid-StateLett.,2001,4,A137.J.R.Dahn,J.Electrochem.Soc.2003,150,A1457.3ColossalvolumechangeChangein(a)length+andwidthx,(b)height,and(c)volumeofthea-Sitowercomparedto(d)voltagevs.AFMscannumber.SchematicdiagramoftheinsituAFMapparatus.OpticalmicrographofaLi-alloyfilmafterexpansion7/31/2023J.R.Dahn,Electroche8/15/2023Y.Cui,Nat.Nanotechnol.,2008,3,31.|Y.Cui,NanoLett.2011,11,2949.|G.Yushin,Nat.Mater.,2010,9,353.|G.A.Ozin,Adv.Funct.Mater.2009,19,1999.|X.J.Huang,Adv.Mater.2011,23,4938.|X.P.Qiu,Electrochem.Commun.,2007,5,930.|S.M.Lee,Electrochim.Acta,2008,53,4500.|J.G.Zhang,J.Electrochem.Soc.,2010,7,A765.|J.R.Dahn,Electrochem.Solid-StateLett.,2007,10,A17.|G.Yushin,ACSAppl.Mater.Inter.,2010,11,3004.|G.Yushin,Science,2011,334,75.SibasedanodeNanomaterialsSiarrayCurrentcollectorBinder4Strategiesforsiliconanodes7/31/2023Y.Cui,Nat.NanotechParticlepulverization
“Astrongsizedependenceoffractureinsiliconmaterialwasdiscoveredthatthereexistsacriticalparticlesizeof~150nmbelowwhichcrackingdidnotoccur.”
[2]Sizeeffect[1]HZhang,NanoLetters2012,12,2778.;[2]XHLiu,ACSNano.2012,2,1522–15318/15/20235ElectrodeElectroniccontactInterfaceStabilityofSEIfilmParticleFractureandPulverizationCurrentcollector;Binder;ArrayStabilityinSi-basedmaterial?[1]Particlepulverization“AstrLiinsertionLiextractionLongcycles8/15/20236TheexposedactivesurfaceduetothevolumechangecausecontinualformationofSEIfilmsandlowcoulombicefficiency(CE).ResearchroutesReducetheparticlesizetoaccommodateSEIfilmDesignporousorhollowstructuretobufferthevolumeexpansionCompositewithCorMetal(Cu)toincreaseelectronicconductivityandmodifytheinterfacebetweenSiandelectrolyte.InvestigatenewbinderandelectrolyteadditivessystemforSi-basedanodematerialsStabilityofSEIfilmLiinsertionLiextractionLong75%SiH4+95%Ar5%H2&95%Ar450
C,1h-2.5hCalcination2N2atmosphere900C,4hN2atmosphere225C,1h500C,2hHeatingunderstirringPorouscarbon80C,solventevaporationCalcination1RemovetemplateHClSiCVDPorousSi-C
NanoCaCO3
SucrosesolutionDepositedsiliconCarbonframeworkafter1stand2ndcalcination8/15/2023PorousSi/CcompositeSynthesisProcess75%SiH4+95%ArCalcination8/15/2023Morphology8in1bold,1ePorousstructureofcarbonsubstratecanbeobservedfromTEMimagesAfterCVD,siliconparticlesadheretotheframeworkandporousstructurewasmaintained.Particlesizeofsiliconis~10nmandhomogeneouslydispersed.ThedepositedsiliconinPorousSi-Cisamorphous,asindicatedbytheabsenceofcrystallitesandbroaddiffuseringsintheSAEDpatterns.Incontrast,whencompositeisheatedto700°Cfor0.5h,alatticefringecorrespondingtod111=0.31nmforsiliconisseeninPorousSi-C-700.ResultsandanalysisSEMandTEMimages7/31/2023Morphology8in1bol8/15/20239in1bold,1eObviouscharacteristicpeakofcrystalsiliconafterheattreatmentat700Cfor0.5hThreeobviousdiffractionpeaksaround28°,47°and56°arefoundafterheattreatment,whichcorrespondverywelltothe(111),(220)and(311)peaksofsiliconwithoutanyimpuritypeaks.Thepeakat520cm-1(indicativeofcrystallinesilicon)isnotdetectedaftersiliconCVD.Thebandscenteredaround155,474cm-1andtheweakshoulderat400cm-1aretypicalfeaturesofamorphoussiliconvibrationmodes[1].ResultsandanalysisStructuralcharacterization[1]D.Aurbach,J.Phys.Chem.C,2007,111,11437.XRDpatternsandRamanspectra7/31/20239in1bold,1eResulN2sorptionisothermsPoresizedistributionBothporouscarbonandporousSi-CshowtypeIVisotherm,whichistypicalcharacteristicofmesoporousstructureObviousdecreaseofspecificsurfacearea(SSA)andporevolumeafterSiCVDPorouscarbon:650m2/g,1.32cc/gPorousSi-C:150m2/g,0.39cc/gPoreswithdiameterof~3nmgeneratedby
decompositionofsucrosePoreswithdiameterof10~40nmduetotheremovalofCaCO3template,whichwerereducedafterSiCVDPorousStructure8/15/202310N2sorptionisothermsPoresizeCharge-DischargecurvesCyclingperformance1)2ndchargecapacity;2)VC:vinylenecarbonate8/15/202311Electrochemicalperformance1stdchcapacity:2404mAh/g1stchcapacity:1541mAh/g1stcoulombicefficiency:64.1%Reversiblecapacity1:1504mAh/gCapacityretention:67%after200cyclesRecipe:PorousSi-C:CB:binder(PAA)=6:2:2;Electrolyte:1MLiPF6inEC-DMC-EMC(1:1:1vol%)with2wt%VC2;loading:0.61
mg/cm2.Capacityisonlybasedonactivematerial.Currentdensity:0.1A/gfor1-2cycle,then0.5A/g;Voltage:0.05–2.0Vvs.LiCharge-DischargecurvesCyclingRatecapabilityIncreasecurrentdensityfrom0.1to2Ag-1,thespecificcapacityofSi/Ccompositeisstillabove500mAhg-1,whenthecurrentdensitychangesbackto0.1Ag-1,morethan92%ofthecapacityatthefirsttencyclesisrecoverable.8/15/202312CurrentDensity(A/g)Dischargecapacity(mAh/g)Chargecapacity(mAh/g)Coulombicefficiency(%)0.192386293.40.562962699.51.046146099.72.03113111000.176675798.9ResultsandanalysisRatecapabilityIncreasecurrenNyquistplotofSi-Ccompositeattheendofdischargeafterdifferentcyclesin1bold,1eElectrochemicalimpedancespectra(EIS)measurementina5.0mVACvoltagesignalinthe105-0.02Hzfrequencyrange.BeforeeachEIStest,theelectrodesweredischargedto0.01Vgalvanostaticallyandthenremainedatopen-circuitforatleast2htostabilizetheirpotential.Theconstancyofthecharacteristicfrequency(20Hz,from30-60cycles)suggeststhatthekineticsofthechargetransferreactiondoesnotvaryuponcycling.Evolutionoftheresistanceinmid-frequencyregion(inset)showsanincreaseinfirst5cyclesthenreduceandmaintainaround40Ohminlatercycles.Resultsandanalysis8/15/202313EIStest[1]D.Guyomard,J.Mater.Chem.,2011,21,6201.NyquistplotofSi-CcompositeSEIfilmwithcyclingSuperficialandcross-sectionalSEMimagesofourcompositeaftera),b)10cycles;c),d)20cycles;e),f)50cyclesandg),h)commercialSimaterialafter50cycles.a)b)d)c)h)g)f)e)PorousstructureofoursynthesizedcompositestillmaintainsaftercyclingandSEIfilmisonlyobservedattheexternalsurfaceofthesiliconparticlewithoutobviousincrassation.IncommercialSimeasurements,excessiveSEIfilmisfoundafter50cycles,whichisunabletobedistinguishedfromSinanoparticles.8/15/202314SEIfilmwithcyclingSuperficiMaterialsaftercycling[1]Y.Cui,NanoLett.10(2010)1409Si/Cafter50cyclesa)SEMandb)TEMimageofSi/Ccompositeattheendof50thcycle;
thecorrespondingelementalmappingofc)carbonandd)silicon.1mMofaceticacidwasusedtoremovetheSEIfilm[1].Porouscarbonstructureismaintained,nanosiliconparticlesaround10nmdoesnotshowaggregationandrupture.Resultsandanalysisa)b)c)d)C-KSi-K8/15/202315Materialsaftercycling[1]Y.SEIconfinementSchematic8/15/202316SEIfilmformsinsidetheporesduetothelowelectrochemicalpotentialoflithiuminsertioninfirstfewcycles.Whentheporesarefullfilled,SEIfilmisconfinedbythewallofcarbonsubstrate,whichpreventtheinternalsiliconparticlefrombeingexposedintheelectrolyte.ResultsSEIconfinementSchematic7/31/28/15/202317SchematicofsynthesisAdvantage:1.EasytosynthesisandregulateaccordingtocommercialCaCO3template2.Hollowstructurewithreservevolumecanaccommodatelargevolumechanges3.Interconnectednanosiliconmeansmoreactiveconductivecontact.NanoCaCO3SiliconlayerLegend:HollowsiliconPurificationbyHFacid(10wt%)5%SiH4+95%Ar400-500
C,1h-2.5hSiCVDTemplateremovalbyHClacid(2wt%)7/31/202317Schematicofsynthe8/15/202318ImagesandpatternsMorphologyResultsa)TEMimagesofnanoCaCO3template;b)SEMimagesofHSA-10(insetisatlowmagnification);TEMimagesofc)HSA-10,e)HSA-15,f)HSA-20;d)thecorrespondingSAEDpatternofHSA-10.Amorphoushollowsiliconmaterialwithdifferentshellthicknesswaspreparedabcdef7/31/202318Imagesandpatterns8/15/202319ImagesandpatternsStructuralcharacterizationbcCharacteristicpeaksofcrystallinesilicon(PDF#65-1060)around28°,47°and56°areabsent,whichcorroboratethestatementofsiliconisamorphous.Thefirstmain3/2-1/2doublet(thespin-orbitsplittingis0.6eVandtheintensityratiois3:1),locatedat99.1-99.7eVcorrespondstoSi0(75%content).Thecomponentlocatedathigherbindingenergy(100.0eV)isassociatedwithSiOxformedatthesurfaceofHSAwithaproportionof25%.Resultsandanalysis7/31/202319Imagesandpatterns8/15/202320ResultsandanalysisThenitrogenadsorption/desorptionisothermsofHSAsamplesshowasharpcapillarycondensationstepathighrelativepressures(P/P0=0.85-0.99),indicatingtheexistenceoflargepores.Correspondingporesizedistributesmainlyintherangeof20nmand100nm,whichisattributedtotheremovalofsite-occupyingnanoCaCO3.IsothermandPoresizedistributionPorousStructureSampleSpecificsurfacearea(m2g-1)Porevolume(ccg-1)HSA-1050.40.983HSA-1538.60.221HSA-2032.70.0917/31/202320Resultsandanalysi8/15/202321CyclingperformanceCycleperformanceTestconditionsRecipe:HS:CB:binder(PAA)=6:2:2Electrolyte:1MLiPF6inEC-DMC-EMC(1:1:1vol%)with2wt%VC;Loading:0.4-0.6mgcm-2
Currentdensity:0.1A/gfor1-3cycle,then0.4A/g;Voltage:0.02–1.50Vvs.LiResultsHSA-10givesthehighestcapacityretention(91%)in100cyclesandcorrespondingreversiblecapacityis~980mAhg-1.Whenincreasetheshellthicknessofsilicon,reversiblecapacityincreases(980mAhg-1ofHSA-15and1133mAhg-1ofHSA-20after100cycles)butthecapacityretentiondecreasesobviously(76%ofHSA-15and73%ofHSA-20)Electrochemicalperformance7/31/202321CyclingperformanceMaterialsaftercycling[1]Y.Cui,NanoLett.10(2010)1409HAS-10after50cyclesa)SEMimageofHSA-10after100cycles;b)SEMimageofHSA-10after100cycleswithoutSEIfilm;c),d)TEMimageofHSA-10after100cycleswithoutSEIfilmatdifferentmagnification.Aggregatedsecondaryparticles(Fig.c)and~10nmsiliconshellstructure(Fig.b&d)weremaintainedwithoutfractureofthehollowspheres.Resultsandanalysis8/15/202322abcdMaterialsaftercycling[1]Y.EIStest8/15/202323StableinterfaceandsmallerresistanceNyquistplotofSi-Ccompositeattheendofdischargeafterdifferentcyclesin1bold,1eElectrochemicalimpedancespectra(EIS)measurementina5.0mVACvoltagesignalinthe105-0.02Hzfrequencyrange.BeforeeachEIStest,theelectrodesweredischargedto0.01Vgalvanostaticallyandthenremainedatopen-circuitforatleast2htostabilizetheirpotential.Evolutionoftheresistanceinmid-frequencyregionmaintains~20OhmduringcyclingwhichislowerthanSi/CcompositeandnanoSimaterial.ResultsandanalysisEIStest7/31/202323StableinteDSCTest8/15/202324StableSEIstructureofsiliconfoamDSCheatingcurvesin1bold,1eCurrentdensityaround0.1mA/gwasappliedtolithiatetheSiactivematerial.Afterthevoltagereached1mV,thecellswereremainedatopen-circuitfor2hthencarefullyopenedinaglovebox.TheelectrodewassoakedinDMCandthendriedundervacuumovernight.MeasurementswereconductedwithaDSC1(METTLERTOLEDO)atatemperaturerampof2?Cmin-1(30-300
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 家庭電工實戰(zhàn)施工方案
- 槽鋼施工方案
- TSHAEPI 012-2024 低碳實踐區(qū)近零碳排放實踐區(qū)建設和評價指南
- 幼兒園環(huán)境創(chuàng)設家長參與2025年度合作協(xié)議
- 二零二五年度劇院包場合同-電影院租賃年度文化合作協(xié)議
- 2025年度跨境電商平臺國際人才招聘與派遣合同
- 二零二五年度茶山租賃及茶葉種植與農業(yè)觀光旅游開發(fā)合同
- 二零二五年度商業(yè)街房地產招商代理執(zhí)行協(xié)議
- 2025年度金融科技股權分紅與風險防范協(xié)議
- 二零二五年度健身房浴室共享租賃合同范本
- (一模)長春市2025屆高三質量監(jiān)測(一)數(shù)學試卷
- 2024-2025學年湖北省武漢市華中師大一附中高三上學期10月檢測英語試題及答案
- 糖尿病課件 教學課件
- DB11T 1607-2018 建筑物通信基站基礎設施設計規(guī)范
- 2024 年 9 時政熱點題庫及答案
- 化工生產設備安全檢查表
- 第8課 隋唐政治演變與民族交融(課件)-【中職專用】《中國歷史》魅力課堂教學三件套(高教版2023?基礎模塊)
- 2024-2025學年小學信息技術(信息科技)第六冊電子工業(yè)版(2022)教學設計合集
- 干部考察談話記錄范文
- 面館合作伙伴合同協(xié)議書
- 2024年中考數(shù)學《二次函數(shù)的實際應用》真題含解析版
評論
0/150
提交評論