初二數(shù)學(xué)分式知識點總結(jié)(20篇)_第1頁
初二數(shù)學(xué)分式知識點總結(jié)(20篇)_第2頁
初二數(shù)學(xué)分式知識點總結(jié)(20篇)_第3頁
初二數(shù)學(xué)分式知識點總結(jié)(20篇)_第4頁
初二數(shù)學(xué)分式知識點總結(jié)(20篇)_第5頁
已閱讀5頁,還剩47頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

第初二數(shù)學(xué)分式知識點總結(jié)(20篇)

初二數(shù)學(xué)分式知識點總結(jié)(精選20篇)

初二數(shù)學(xué)分式知識點總結(jié)篇1

1全等三角形的對應(yīng)邊、對應(yīng)角相等

2邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等

3角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等

4推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等

5邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等

6斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等

7定理1在角的平分線上的點到這個角的兩邊的距離相等

8定理2到一個角的兩邊的距離相同的點,在這個角的平分線上

9角的平分線是到角的兩邊距離相等的所有點的集合

10等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)

21推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

22等腰三角形的`頂角平分線、底邊上的中線和底邊上的高互相重合

23推論3等邊三角形的各角都相等,并且每一個角都等于60°

24等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

25推論1三個角都相等的三角形是等邊三角形

26推論2有一個角等于60°的等腰三角形是等邊三角形

27在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

28直角三角形斜邊上的中線等于斜邊上的一半

29定理線段垂直平分線上的點和這條線段兩個端點的距離相等

30逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

初二數(shù)學(xué)分式知識點總結(jié)篇2

第一章一次函數(shù)

1函數(shù)的定義,函數(shù)的定義域、值域、表達(dá)式,函數(shù)的圖像

2一次函數(shù)和正比例函數(shù),包括他們的表達(dá)式、增減性、圖像

3從函數(shù)的觀點看方程、方程組和不等式

第二章數(shù)據(jù)的描述

1了解幾種常見的統(tǒng)計圖表:條形圖、扇形圖、折線圖、復(fù)合條形圖、直方圖,了解各種圖表的特點

條形圖特點:

(1)能夠顯示出每組中的具體數(shù)據(jù);

(2)易于比較數(shù)據(jù)間的差別

扇形圖的特點:

(1)用扇形的面積來表示部分在總體中所占的百分比;

(2)易于顯示每組數(shù)據(jù)相對與總數(shù)的大小

折線圖的特點;

易于顯示數(shù)據(jù)的變化趨勢

直方圖的特點:

(1)能夠顯示各組頻數(shù)分布的情況;

(2)易于顯示各組之間頻數(shù)的差別

2會用各種統(tǒng)計圖表示出一些實際的問題

第三章全等三角形

1全等三角形的性質(zhì):

全等三角形的對應(yīng)邊、對應(yīng)角相等

2全等三角形的判定

邊邊邊、邊角邊、角邊角、角角邊、直角三角形的HL定理

3角平分線的性質(zhì)

角平分線上的點到角的兩邊的距離相等;

到角的兩邊距離相等的點在角的平分線上.

第四章軸對稱

1軸對稱圖形和關(guān)于直線對稱的兩個圖形

2軸對稱的性質(zhì)

軸對稱圖形的對稱軸是任何一對對應(yīng)點所連線段的垂直平分線;

如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點所連的線段的垂直平分線;

線段垂直平分線上的點到線段兩個端點的距離相等;

到線段兩個端點距離相等的點在這條線段的垂直平分線上

3用坐標(biāo)表示軸對稱

點(_,y)關(guān)于_軸對稱的點的坐標(biāo)是(_,-y),關(guān)于y軸對稱的點的坐標(biāo)是(-_,y),關(guān)于原點對稱的點的坐標(biāo)是(-_,-y).

4等腰三角形

等腰三角形的兩個底角相等;(等邊對等角)

等腰三角形的頂角平分線、底邊上的中線、底邊上的高線互相重合;(三線合一)

一個三角形的兩個相等的角所對的邊也相等.(等角對等邊)

5等邊三角形的性質(zhì)和判定

等邊三角形的三個內(nèi)角都相等,都等于60度;

三個角都相等的三角形是等邊三角形;

有一個角是60度的等腰三角形是等邊三角形;

推論:

直角三角形中,如果有一個銳角是30度,那么他所對的直角邊等于斜邊的一半.

在三角形中,大角對大邊,大邊對大角.

第五章整式

1整式定義、同類項及其合并

2整式的加減

3整式的乘法

(1)同底數(shù)冪的乘法:

(2)冪的乘方

(3)積的乘方

(4)整式的乘法

4乘法公式

(1)平方差公式

(2)完全平方公式

5整式的除法

(1)同底數(shù)冪的除法

(2)整式的除法

6因式分解

(1)提共因式法

(2)公式法

(3)十字相乘法

初二下冊知識點

第一章分式

1分式及其基本性質(zhì)

分式的分子和分母同時乘以(或除以)一個不等于零的整式,分式的只不變

2分式的運(yùn)算

(1)分式的乘除

乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母

除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘.

(2)分式的加減

加減法法則:同分母分式相加減,分母不變,把分子相加減;

異分母分式相加減,先通分,變?yōu)橥帜傅姆质?再加減

3整數(shù)指數(shù)冪的加減乘除法

4分式方程及其解法

第二章反比例函數(shù)

1反比例函數(shù)的表達(dá)式、圖像、性質(zhì)

圖像:雙曲線

表達(dá)式:y=k/_(k不為0)

性質(zhì):兩支的增減性相同;

2反比例函數(shù)在實際問題中的應(yīng)用

第三章勾股定理

1勾股定理:直角三角形的兩個直角邊的平方和等于斜邊的平方

2勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等于第三條邊的平方,那么這個三角形是直角三角形.

第四章四邊形

1平行四邊形

性質(zhì):對邊相等;對角相等;對角線互相平分.

判定:兩組對邊分別相等的四邊形是平行四邊形;

兩組對角分別相等的四邊形是平行四邊形;

對角線互相平分的四邊形是平行四邊形;

一組對邊平行而且相等的四邊形是平行四邊形.

推論:三角形的中位線平行第三邊,并且等于第三邊的一半.

2特殊的平行四邊形:矩形、菱形、正方形

(1)矩形

性質(zhì):矩形的四個角都是直角;

矩形的對角線相等;

矩形具有平行四邊形的所有性質(zhì)

判定:有一個角是直角的平行四邊形是矩形;

對角線相等的平行四邊形是矩形;

推論:直角三角形斜邊的中線等于斜邊的一半.

(2)菱形

性質(zhì):菱形的四條邊都相等;

菱形的對角線互相垂直,并且每一條對角線平分一組對角;

菱形具有平行四邊形的一切性質(zhì)

判定:有一組鄰邊相等的平行四邊形是菱形;

對角線互相垂直的平行四邊形是菱形;

四邊相等的四邊形是菱形.

(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質(zhì).

3梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底邊上的兩個角相等;

等腰梯形的兩條對角線相等;

同一個底上的兩個角相等的梯形是等腰梯形.

第五章數(shù)據(jù)的分析

加權(quán)平均數(shù)、中位數(shù)、眾數(shù)、極差、方差

初二數(shù)學(xué)分式知識點總結(jié)篇3

軸對稱

1.如果一個平面圖形沿著一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。

2.性質(zhì)

(1)成軸對稱的兩個圖形全等;

(2)如果兩個圖形成軸對稱,那么對稱軸是對稱點連線的垂直平分線。

一次函數(shù)

(一)一次函數(shù)是函數(shù)中的一種,一般形如y=k_+b(k,b是常數(shù),k≠0),其中_是自變量,y是因變量。特別地,當(dāng)b=0時,y=k_+b(k為常數(shù),k≠0),y叫做_的正比例函數(shù)。

(二)函數(shù)三要素

1.定義域:設(shè)_、y是兩個變量,變量_的變化范圍為D,如果對于每一個數(shù)_∈D,變量y遵照一定的法則總有確定的數(shù)值與之對應(yīng),則稱y是_的函數(shù),記作y=f(_),_∈D,_稱為自變量,y稱為因變量,數(shù)集D稱為這個函數(shù)的定義域。

2.在函數(shù)經(jīng)典定義中,因變量改變而改變的取值范圍叫做這個函數(shù)的值域,在函數(shù)現(xiàn)代定義中是指定義域中所有元素在某個對應(yīng)法則下對應(yīng)的所有的象所組成的集合。如:f(_)=_,那么f(_)的取值范圍就是函數(shù)f(_)的值域。

3.對應(yīng)法則:一般地說,在函數(shù)記號y=f(_)中,“f”即表示對應(yīng)法則,等式y(tǒng)=f(_)表明,對于定義域中的任意的_值,在對應(yīng)法則“f”的作用下,即可得到值域中唯一y值。

(三)一次函數(shù)的表示方法

1.解析式法:用含自變量_的式子表示函數(shù)的方法叫做解析式法。

2.列表法:把一系列_的值對應(yīng)的函數(shù)值y列成一個表來表示的函數(shù)關(guān)系的方法叫做列表法。

3.圖像法:用圖象來表示函數(shù)關(guān)系的方法叫做圖象法。

(四)一次函數(shù)的性質(zhì)

1.y的變化值與對應(yīng)的_的變化值成正比例,比值為k。即:y=k_+b(k≠0)(k不等于0,且k,b為常數(shù))。

2.當(dāng)_=0時,b為函數(shù)在y軸上的交點,坐標(biāo)為(0,b)。當(dāng)y=0時,該函數(shù)圖象在_軸上的交點坐標(biāo)為(-b/k,0)。

3.k為一次函數(shù)y=k_+b的斜率,k=tanθ(角θ為一次函數(shù)圖象與_軸正方向夾角,θ≠90°)。

4.當(dāng)b=0時(即y=k_),一次函數(shù)圖象變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。

5.函數(shù)圖象性質(zhì):當(dāng)k相同,且b不相等,圖像平行;當(dāng)k不同,且b相等,圖象相交于Y軸;當(dāng)k互為負(fù)倒數(shù)時,兩直線垂直。

6.平移時:上加下減在末尾,左加右減在中間。

直角三角形

1.勾股定理及其逆定理

定理:直角三角形的兩條直角邊的等于的平方。

逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個三角形是直角三角形。

2.含30°的直角三角形的邊的性質(zhì)

定理:在直角三角形中,如果一個銳角等于30°,那么等于的一半。

3.直角三角形斜邊上的中線等于斜邊的一半。

要點詮釋:①勾股定理的逆定理在語言敘述的時候一定要注意,不能說成“兩條邊的平方和等于斜邊的平方”,應(yīng)該說成“三角形兩邊的平方和等于第三邊的平方”。

②直角三角形的全等判定方法,HL還有SSS,SAS,ASA,AAS,一共有5種判定方法。

圖形的平移與旋轉(zhuǎn)

1.平移,是指在同一平面內(nèi),將一個圖形上的所有點都按照某個直線方向做相同距離的移動,這樣的圖形運(yùn)動叫做圖形的平移運(yùn)動,簡稱平移。

2.平移性質(zhì)

(1)圖形平移前后的形狀和大小沒有變化,只是位置發(fā)生變化。

(2)圖形平移后,對應(yīng)點連成的線段平行(或在同一直線上)且相等。

拓展閱讀:初中數(shù)學(xué)提高解題速度的方法

初二數(shù)學(xué)分式知識點總結(jié)篇4

一次函數(shù)

(1)正比例函數(shù):一般地,形如y=k_(k是常數(shù),k?0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù);

(2)正比例函數(shù)圖像特征:一些過原點的直線;

(3)圖像性質(zhì):

①當(dāng)k>0時,函數(shù)y=k_的圖像經(jīng)過第一、三象限,從左向右上升,即隨著_的增大y也增大;②當(dāng)k0,向上平移;當(dāng)b0時,直線y=k_+b由左至右上升,即y隨著_的增大而增大;

③當(dāng)k0時,直線y=k_+b與y軸正半軸有交點為(0,b);

⑤當(dāng)b

(10)求一次函數(shù)的解析式:即要求k與b的值;

(11)畫一次函數(shù)的圖像:已知兩點;

用函數(shù)觀點看方程(組)與不等式

(1)解一元一次方程可以轉(zhuǎn)化為:當(dāng)某個一次函數(shù)的值為0時,求相應(yīng)的自變量的值;從圖像上看,這相當(dāng)于已知直線y=k_+b,確定它與_軸交點的橫坐標(biāo)的值;

(2)解一元一次不等式可以看作:當(dāng)一次函數(shù)值大(小)于0時,求自變量相應(yīng)的取值范圍;

(3)每個二元一次方程都對應(yīng)一個一元一次函數(shù),于是也對應(yīng)一條直線;

(4)一般地,每個二元一次方程組都對應(yīng)兩個一次函數(shù),于是也對應(yīng)兩條直線。從“數(shù)”的角度看,解方程組相當(dāng)于考慮自變量為何值時兩個函數(shù)的值相等,以及這個函數(shù)值是何值;從“形”的角度看,解方程組相當(dāng)于確定兩條直線交點的坐標(biāo);

初二數(shù)學(xué)分式知識點總結(jié)篇5

一、認(rèn)真?zhèn)湔n,不但備學(xué)生而且備教材備教法,根據(jù)教材內(nèi)容及學(xué)生的實際,擬定采用的教學(xué)方法,認(rèn)真寫好教案。

每一課都做到“有備而來”,每堂課都在課前做好充分的準(zhǔn)備,并制作各種利于吸引學(xué)生注意力的有趣教具,課后及時對該課作出總結(jié),寫好教學(xué)后記。

二、增強(qiáng)上課技能,提高教學(xué)質(zhì)量,使講解清晰化,條理化,準(zhǔn)確化,情感化,生動化,做到線索清晰,層次分明,言簡意賅,深入淺出。

在課堂上特別注意調(diào)動學(xué)生的積極性,加強(qiáng)師生交流,充分體現(xiàn)學(xué)生的主導(dǎo)作用,讓學(xué)生學(xué)得容易,學(xué)得輕松,學(xué)得愉快;注意精講精練,在課堂上老師講得盡量少,學(xué)生動口動手動腦盡量多;同時在每一堂課上都充分考慮每一個層次的學(xué)生學(xué)習(xí)需求和學(xué)習(xí)能力,讓各個層次的學(xué)生都得到提高。

三、作業(yè)的選取要有針對性,有層次性,力求每一次練習(xí)都起到的效果。

同時對學(xué)生的作業(yè)批改及時、認(rèn)真,分析并記錄學(xué)生的作業(yè)情況,將他們在作業(yè)過程出現(xiàn)的問題作出分類總結(jié),進(jìn)行透切的評講,并針對有關(guān)情況及時改進(jìn)教學(xué)方法,做到有的放矢。

四、做好課后輔導(dǎo)工作,注意分層教學(xué)。

在課后,為不同層次的學(xué)生進(jìn)行相應(yīng)的輔導(dǎo),以滿足不同層次的學(xué)生的需求,避免了一刀切的弊端,同時加大了后進(jìn)生的輔導(dǎo)力度。對后進(jìn)生的輔導(dǎo),并不限于學(xué)習(xí)知識性的輔導(dǎo),更重要的是學(xué)習(xí)思想的輔導(dǎo),要提高后進(jìn)生的成績,首先要解決他們心結(jié),讓他們意識到學(xué)習(xí)的重要性和必要性,使之對學(xué)習(xí)萌發(fā)興趣。

要通過各種途徑激發(fā)他們的求知欲和上進(jìn)心,讓他們意識到學(xué)習(xí)并不是一項任務(wù),也不是一件痛苦的事情。而是充滿樂趣的。從而自覺的把身心投放到學(xué)習(xí)中去。這樣,后進(jìn)生的轉(zhuǎn)化,就由原來的簡單粗暴、強(qiáng)制學(xué)習(xí)轉(zhuǎn)化到自覺的求知上來。使學(xué)習(xí)成為他們自我意識力度一部分。在此基礎(chǔ)上,再教給他們學(xué)習(xí)的方法,提高他們的技能。

并認(rèn)真細(xì)致地做好查漏補(bǔ)缺工作。后進(jìn)生通常存在很多知識斷層,這些都是后進(jìn)生轉(zhuǎn)化過程中的拌腳石,在做好后進(jìn)生的轉(zhuǎn)化工作時,要特別注意給他們補(bǔ)課,把他們以前學(xué)習(xí)的知識斷層補(bǔ)充完整,這樣,他們就會學(xué)得輕松,進(jìn)步也快,興趣和求知欲也會隨之增加。

立足現(xiàn)在,放眼未來,為使今后的工作取得更大的進(jìn)步,現(xiàn)對本學(xué)期教學(xué)工作作出總結(jié),希望能發(fā)揚(yáng)優(yōu)點,克服不足,總結(jié)經(jīng)驗教訓(xùn),以促進(jìn)教學(xué)工作更上一層樓。

初二數(shù)學(xué)分式知識點總結(jié)篇6

軸對稱

1.如果一個平面圖形沿著一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。

2.性質(zhì)

(1)成軸對稱的兩個圖形全等;

(2)如果兩個圖形成軸對稱,那么對稱軸是對稱點連線的垂直平分線。

一次函數(shù)

(一)一次函數(shù)是函數(shù)中的一種,一般形如y=k_+b(k,b是常數(shù),k≠0),其中_是自變量,y是因變量。特別地,當(dāng)b=0時,y=k_+b(k為常數(shù),k≠0),y叫做_的正比例函數(shù)。

(二)函數(shù)三要素

1.定義域:設(shè)_、y是兩個變量,變量_的變化范圍為D,如果對于每一個數(shù)_∈D,變量y遵照一定的法則總有確定的數(shù)值與之對應(yīng),則稱y是_的函數(shù),記作y=f(_),_∈D,_稱為自變量,y稱為因變量,數(shù)集D稱為這個函數(shù)的定義域。

2.在函數(shù)經(jīng)典定義中,因變量改變而改變的取值范圍叫做這個函數(shù)的值域,在函數(shù)現(xiàn)代定義中是指定義域中所有元素在某個對應(yīng)法則下對應(yīng)的所有的象所組成的集合。如:f(_)=_,那么f(_)的取值范圍就是函數(shù)f(_)的值域。

3.對應(yīng)法則:一般地說,在函數(shù)記號y=f(_)中,“f”即表示對應(yīng)法則,等式y(tǒng)=f(_)表明,對于定義域中的任意的_值,在對應(yīng)法則“f”的作用下,即可得到值域中唯一y值。

(三)一次函數(shù)的表示方法

1.解析式法:用含自變量_的式子表示函數(shù)的方法叫做解析式法。

2.列表法:把一系列_的值對應(yīng)的函數(shù)值y列成一個表來表示的函數(shù)關(guān)系的方法叫做列表法。

3.圖像法:用圖象來表示函數(shù)關(guān)系的方法叫做圖象法。

(四)一次函數(shù)的性質(zhì)

1.y的變化值與對應(yīng)的_的變化值成正比例,比值為k。即:y=k_+b(k≠0)(k不等于0,且k,b為常數(shù))。

2.當(dāng)_=0時,b為函數(shù)在y軸上的交點,坐標(biāo)為(0,b)。當(dāng)y=0時,該函數(shù)圖象在_軸上的交點坐標(biāo)為(-b/k,0)。

3.k為一次函數(shù)y=k_+b的斜率,k=tanθ(角θ為一次函數(shù)圖象與_軸正方向夾角,θ≠90°)。

4.當(dāng)b=0時(即y=k_),一次函數(shù)圖象變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。

5.函數(shù)圖象性質(zhì):當(dāng)k相同,且b不相等,圖像平行;當(dāng)k不同,且b相等,圖象相交于Y軸;當(dāng)k互為負(fù)倒數(shù)時,兩直線垂直。

6.平移時:上加下減在末尾,左加右減在中間。

直角三角形

1.勾股定理及其逆定理

定理:直角三角形的兩條直角邊的等于的平方。

逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個三角形是直角三角形。

2.含30°的直角三角形的邊的性質(zhì)

定理:在直角三角形中,如果一個銳角等于30°,那么等于的一半。

3.直角三角形斜邊上的中線等于斜邊的一半。

要點詮釋:①勾股定理的逆定理在語言敘述的時候一定要注意,不能說成“兩條邊的平方和等于斜邊的平方”,應(yīng)該說成“三角形兩邊的平方和等于第三邊的平方”。

②直角三角形的全等判定方法,HL還有SSS,SAS,ASA,AAS,一共有5種判定方法。

圖形的平移與旋轉(zhuǎn)

1.平移,是指在同一平面內(nèi),將一個圖形上的所有點都按照某個直線方向做相同距離的移動,這樣的圖形運(yùn)動叫做圖形的平移運(yùn)動,簡稱平移。

2.平移性質(zhì)

(1)圖形平移前后的形狀和大小沒有變化,只是位置發(fā)生變化。

(2)圖形平移后,對應(yīng)點連成的線段平行(或在同一直線上)且相等。

初二數(shù)學(xué)分式知識點總結(jié)篇7

1、正方形的概念

有一組鄰邊相等并且有一個角是直角的平行四邊形叫做正方形。

2、正方形的性質(zhì)

(1)具有平行四邊形、矩形、菱形的一切性質(zhì);

(2)正方形的四個角都是直角,四條邊都相等;

(3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角;

(4)正方形是軸對稱圖形,有4條對稱軸;

(5)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,兩條對角線把正方形分成四個全等的小等腰直角三角形;

(6)正方形的一條對角線上的一點到另一條對角線的兩端點的距離相等。

3、正方形的判定

(1)判定一個四邊形是正方形的主要依據(jù)是定義,途徑有兩種:

先證它是矩形,再證有一組鄰邊相等。

先證它是菱形,再證有一個角是直角。

(2)判定一個四邊形為正方形的一般順序如下:

先證明它是平行四邊形;

再證明它是菱形(或矩形);

最后證明它是矩形(或菱形)。

初二數(shù)學(xué)分式知識點總結(jié)篇8

一年來,我在工作中,堅持努力提高自己的思想政治水平和教學(xué)業(yè)務(wù)能力,新的時代,新的教育理念,教育也提出新的改革,新課程的實施,對我們教師的工作提出了更高的要求,我從各方面嚴(yán)格要求自己,努力提高自己的業(yè)務(wù)水平豐富知識面,結(jié)合本校的實際條件和學(xué)生的實際情況,勤勤懇懇,兢兢業(yè)業(yè),使教學(xué)工作有計劃,有組織,有步驟地開展。立足現(xiàn)在,放眼未來,為使今后的工作取得更大的進(jìn)步不斷努力,現(xiàn)對近年來教學(xué)工作作出總結(jié),希望能發(fā)揚(yáng)優(yōu)點,克服不足,總結(jié)檢驗教訓(xùn),繼往開來,以促進(jìn)教學(xué)工作更上一層樓。

一、堅持認(rèn)真?zhèn)湔n,備課中我不僅備學(xué)生而且備教材備教法,根據(jù)教材內(nèi)容及學(xué)生的實際,設(shè)計課的類型,擬定采用的教學(xué)方法,并對教學(xué)過程的程序及時間安排都作了詳細(xì)的記錄,認(rèn)真寫好教案。每一課都做到有備而來,每堂課都在課前做好充分的準(zhǔn)備,并制作各種利于吸引學(xué)生注意力的有趣教具,課后及時對該課作出總結(jié),寫好教學(xué)后記。

二、努力增強(qiáng)我的上課技能,提高教學(xué)質(zhì)量此文來自優(yōu)秀教育資源網(wǎng)斐斐,課件園,使講解清晰化,條理化,準(zhǔn)確化,條理化,準(zhǔn)確化,情感化,生動化,做到線索清晰,層次分明,言簡意賅,深入淺出。在課堂上特別注意調(diào)動學(xué)生的積極性,加強(qiáng)師生交流,充分體現(xiàn)學(xué)生的主作用,讓學(xué)生學(xué)得容易,學(xué)得輕松,學(xué)得愉快;注意精講精練,在課堂上老師講得盡量少,學(xué)生動口動手動腦盡量多;同時在每一堂課上都充分考慮每一個層次的學(xué)生學(xué)習(xí)需求和學(xué)習(xí)能力,讓各個層次的學(xué)生都得到提高。現(xiàn)在學(xué)生普遍反映喜歡上語文課,就連以前極討厭語文的學(xué)生都樂于上課了。

三、與同事交流,虛心請教其他老師。在教學(xué)上,有疑必問。在各個章節(jié)的學(xué)習(xí)上都積極征求其他老師的意見,學(xué)習(xí)他們的方法,同時,多聽老師的課,做到邊聽邊講,學(xué)習(xí)別人的優(yōu)點,克服自己的不足。

四、完善批改作業(yè):布置作業(yè)做到精讀精練。有針對性,有層次性。為了做到這點,我常常到各大書店去搜集資料,對各種輔助資料進(jìn)行篩選,力求每一次練習(xí)都起到最大的效果。同時對學(xué)生的作業(yè)批改及時、認(rèn)真,分析并記錄學(xué)生的作業(yè)情況,將他們在作業(yè)過程出現(xiàn)的問題作出分類總結(jié),進(jìn)行透切的評講,并針對有關(guān)情況及時改進(jìn)教學(xué)方法,做到有的放矢。

五、做好課后輔導(dǎo)工作,注意分層教學(xué)。在課后,為不同層次的學(xué)生進(jìn)行相應(yīng)的輔導(dǎo),以滿足不同層次的學(xué)生的需求,避免了一刀切的弊端,同時加大了后進(jìn)生的輔導(dǎo)力度。對后進(jìn)生的輔導(dǎo),并不限于學(xué)習(xí)知識性的輔導(dǎo),更重要的是學(xué)習(xí)思想的輔導(dǎo),要提高后進(jìn)生的成績,首先要解決他們心結(jié),讓他們意識到學(xué)習(xí)的重要性和必要性,使之對學(xué)習(xí)萌發(fā)興趣。要通過各種途徑激發(fā)他們的求知欲和上進(jìn)心,讓他們意識到學(xué)習(xí)并不是一項任務(wù),也不是一件痛苦的事情。而是充滿樂趣的。從而自覺的把身心投放到學(xué)習(xí)中去。這樣,后進(jìn)生的轉(zhuǎn)化,就由原來的簡單粗暴、強(qiáng)制學(xué)習(xí)轉(zhuǎn)化到自覺的求知上來。使學(xué)習(xí)成為他們自我意識力度一部分。在此基礎(chǔ)上,再教給他們學(xué)習(xí)的方法,提高他們的技能。并認(rèn)真細(xì)致地做好查漏補(bǔ)缺工作。后進(jìn)生通常存在很多知識斷層,這些都是后進(jìn)生轉(zhuǎn)化過程中的拌腳石,在做好后進(jìn)生的轉(zhuǎn)化工作時,要特別注意給他們補(bǔ)課,把他們以前學(xué)習(xí)的知識斷層補(bǔ)充完整,這樣,他們就會學(xué)得輕松,進(jìn)步也快,興趣和求知欲也會隨之增加。

六、積極推進(jìn)素質(zhì)教育。要以提高學(xué)生素質(zhì)教育為主導(dǎo)思想,為此,我在教學(xué)工作中并非只是傳授知識,而是注意了學(xué)生能力的培養(yǎng),把傳授知識、技能和發(fā)展智力、能力結(jié)合起來,在知識層面上注入了思想情感教育的因素,發(fā)揮學(xué)生的創(chuàng)新意識和創(chuàng)新能力。讓學(xué)生的各種素質(zhì)都得到有效的發(fā)展和培養(yǎng)。

初二數(shù)學(xué)分式知識點總結(jié)篇9

第一章一次函數(shù)

1函數(shù)的定義,函數(shù)的定義域、值域、表達(dá)式,函數(shù)的圖像

2一次函數(shù)和正比例函數(shù),包括他們的表達(dá)式、增減性、圖像

3從函數(shù)的觀點看方程、方程組和不等式

第二章數(shù)據(jù)的描述

1了解幾種常見的統(tǒng)計圖表:條形圖、扇形圖、折線圖、復(fù)合條形圖、直方圖,了解各種圖表的特點

條形圖特點:

(1)能夠顯示出每組中的具體數(shù)據(jù);

(2)易于比較數(shù)據(jù)間的差別

扇形圖的特點:

(1)用扇形的面積來表示部分在總體中所占的百分比;

(2)易于顯示每組數(shù)據(jù)相對與總數(shù)的大小

折線圖的特點;

易于顯示數(shù)據(jù)的變化趨勢

直方圖的特點:

(1)能夠顯示各組頻數(shù)分布的情況;

(2)易于顯示各組之間頻數(shù)的差別

2會用各種統(tǒng)計圖表示出一些實際的問題

第三章全等三角形

1全等三角形的性質(zhì):

全等三角形的對應(yīng)邊、對應(yīng)角相等

2全等三角形的判定

邊邊邊、邊角邊、角邊角、角角邊、直角三角形的HL定理

3角平分線的性質(zhì)

角平分線上的點到角的兩邊的距離相等;

到角的兩邊距離相等的點在角的平分線上.

第四章軸對稱

1軸對稱圖形和關(guān)于直線對稱的兩個圖形

2軸對稱的性質(zhì)

軸對稱圖形的對稱軸是任何一對對應(yīng)點所連線段的垂直平分線;

如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點所連的線段的垂直平分線;

線段垂直平分線上的點到線段兩個端點的距離相等;

到線段兩個端點距離相等的點在這條線段的垂直平分線上

3用坐標(biāo)表示軸對稱

點(_,y)關(guān)于_軸對稱的點的坐標(biāo)是(_,-y),關(guān)于y軸對稱的點的坐標(biāo)是(-_,y),關(guān)于原點對稱的點的坐標(biāo)是(-_,-y).

4等腰三角形

等腰三角形的兩個底角相等;(等邊對等角)

等腰三角形的頂角平分線、底邊上的中線、底邊上的高線互相重合;(三線合一)

一個三角形的兩個相等的角所對的邊也相等.(等角對等邊)

5等邊三角形的性質(zhì)和判定

等邊三角形的三個內(nèi)角都相等,都等于60度;

三個角都相等的三角形是等邊三角形;

有一個角是60度的等腰三角形是等邊三角形;

推論:

直角三角形中,如果有一個銳角是30度,那么他所對的直角邊等于斜邊的一半.

在三角形中,大角對大邊,大邊對大角.

第五章整式

1整式定義、同類項及其合并

2整式的加減

3整式的乘法

(1)同底數(shù)冪的乘法:

(2)冪的乘方

(3)積的乘方

(4)整式的乘法

4乘法公式

(1)平方差公式

(2)完全平方公式

5整式的除法

(1)同底數(shù)冪的除法

(2)整式的除法

6因式分解

(1)提共因式法

(2)公式法

(3)十字相乘法

初二數(shù)學(xué)分式知識點總結(jié)篇10

一.定義

1.一般地,如果一個正數(shù)_的平方等于a,即_2=a,那么這個正數(shù)_叫做a的算術(shù)平方根.a叫做被開方數(shù)。

2.一般地,如果一個數(shù)的平方等于a,那么這個數(shù)叫做a的平方根或二次方根,求一個數(shù)a的平方根的運(yùn)算,叫做開平方。

3.一般地,如果一個數(shù)的立方等于a,那么這個數(shù)叫做a的立方根或三次方根,求一個數(shù)的立方根的運(yùn)算,叫做開立方。

4.任何一個有理數(shù)都可以寫成有限小數(shù)或無限循環(huán)小數(shù)的形式.任何有限小數(shù)或無限循環(huán)小數(shù)也都是有理數(shù)。

5.無限不循環(huán)小數(shù)又叫無理數(shù)。

6.有理數(shù)和無理數(shù)統(tǒng)稱實數(shù)。

7.數(shù)軸上的點與實數(shù)一一對應(yīng).平面直角坐標(biāo)系中與有序?qū)崝?shù)對之間也是一一對應(yīng)的。

二.重點

1.平方與開平方互為逆運(yùn)算。

2.正數(shù)的平方根有兩個,它們互為相反數(shù),其中正的平方根就是這個數(shù)的算術(shù)平方根。

3.當(dāng)被開方數(shù)的小數(shù)點向右每移動兩位,它的算術(shù)平方根的小數(shù)點就向右移動一位。

4.當(dāng)被平方數(shù)小數(shù)點每向右移動三位,它的立方根小數(shù)點向右移動一位。

5.數(shù)a的相反數(shù)是-a[a為任意實數(shù)],一個正實數(shù)的絕對值是它本身,一個負(fù)實數(shù)的絕對值是它的相反數(shù);0的絕對值是0。

三.注意

1.被開方數(shù)一定是非負(fù)數(shù)。

2.0,1的算術(shù)平方根是它本身;0的平方根是0,負(fù)數(shù)沒有平方根;正數(shù)的立方根是正數(shù),負(fù)數(shù)的立方根是負(fù)數(shù),0的立方根是0。

3.帶根號的無理數(shù)的整數(shù)倍或幾分之幾仍是無理數(shù);帶根號的數(shù)若開之后是有理數(shù)則是有理數(shù);任何一個有理數(shù)都能寫成分?jǐn)?shù)的形式。

初二數(shù)學(xué)分式知識點總結(jié)篇11

一、課前準(zhǔn)備工作

認(rèn)真鉆研教材,對教材的基本思想、基本概念,每句話、每個字都弄清楚,了解教材的結(jié)構(gòu),重點與難點,掌握知識的邏輯,能運(yùn)用自如,知道應(yīng)補(bǔ)充哪些資料,怎樣才能教好。除認(rèn)真鉆研教材、吃透教材外,還要深入了解學(xué)生,了解學(xué)生原有的知識技能的質(zhì)量,他們的興趣、需要、方法、習(xí)慣,學(xué)習(xí)新知識可能會有哪些困難,采取相應(yīng)的預(yù)防措施。這樣能使課堂教學(xué)中的輔導(dǎo)有針對性,避免盲目性。在了解學(xué)生的基礎(chǔ)上考慮教法,解決如何把已掌握的教材傳授給學(xué)生,包括如何組織教材、如何安排每節(jié)課的活動。把教材和學(xué)生實際很好地結(jié)合起來,確定課堂上要講的主要內(nèi)容。

二、課堂工作

(1)首先搞好組織教學(xué),這是順利進(jìn)行正常教學(xué)的保證。

新課程數(shù)學(xué)的組織教學(xué)與傳統(tǒng)的組織教學(xué)有明顯的不同,我們知道,組織教學(xué)的任務(wù)就是把全班學(xué)生的注意力自始至終組織到當(dāng)堂課的學(xué)習(xí)任務(wù)上來。傳統(tǒng)的課堂教學(xué),更多地是教師將學(xué)生的注意力集中在教師的講授上,但是根據(jù)學(xué)生的年齡特征,一般地,初中學(xué)生,特別是低年級學(xué)生的注意力容易分散,注意的集中是相對的,分散是絕對的,因此,組織教學(xué)應(yīng)貫穿于全部教學(xué)過程之中。在組織教學(xué)中,教師要能真正起作用,達(dá)到目的,師生之間的感情因素非常重要,因此,教師的威信將起到較大作用。教師既要親切又要嚴(yán)肅,要使課堂氣氛活而不亂,盡量避免學(xué)生產(chǎn)生壓抑和過度焦慮,使學(xué)生在和諧的氣氛中發(fā)揮出正常的智力水平,高效地進(jìn)行學(xué)習(xí)。

(2)其次是復(fù)習(xí)舊課,引入新課。根據(jù)學(xué)生掌握知識的情況以及涉及本課的有關(guān)知識進(jìn)行復(fù)習(xí),要簡明扼要,抓住要點,點穿實質(zhì),然后,自然過渡,引入新課,簡述學(xué)習(xí)課題,布置學(xué)習(xí)內(nèi)容,明確學(xué)習(xí)要求,以保證教學(xué)過程的計劃性和完整性。充分地照顧了學(xué)生學(xué)習(xí)上的差異,這樣學(xué)生可以快者快學(xué),慢者慢學(xué),達(dá)到了班集體與個別化相結(jié)合。

(3)再次是學(xué)生根據(jù)教師要求獨立進(jìn)行學(xué)習(xí)活動。在理解教材內(nèi)容的基礎(chǔ)上做練習(xí),及時反饋學(xué)習(xí)效果,自己不能解決的問題及時請教老師。對于學(xué)習(xí)思維品質(zhì)不踏實的學(xué)生,要注意用具體的事例,通過嚴(yán)格要求,逐漸培養(yǎng)他們的踏實品質(zhì);對于學(xué)習(xí)成績優(yōu)異者,應(yīng)指導(dǎo)他們向深度、廣度發(fā)展,向他們提出進(jìn)一步深入學(xué)習(xí)的要求,并具體落實,讓他們能夠充分利用課堂上這段寶貴的時間,充分發(fā)揮其潛力,提高效率,超額超前完成學(xué)習(xí)任務(wù),對于學(xué)習(xí)基礎(chǔ)較差,思維不敏捷的學(xué)生,加強(qiáng)重點輔導(dǎo)。在這里教師掌握每個學(xué)生的情況和把握整個課堂,始終處于積極主動的狀態(tài)非常重要。

三、課后輔導(dǎo)工作

要提高教學(xué)質(zhì)量,還要做好課后輔導(dǎo)工作,初中的學(xué)生愛動、好玩,缺乏自控能力,常在學(xué)習(xí)上不能按時完成作業(yè),有的學(xué)生抄襲作業(yè),針對這種問題,就要抓好學(xué)生的思想教育,并使這一工作貫徹到對學(xué)生的學(xué)習(xí)指導(dǎo)中去,還要做好對學(xué)生學(xué)習(xí)的輔導(dǎo)和幫助工作,尤其在后進(jìn)生的轉(zhuǎn)化上。

在輔導(dǎo)工作中,我善于根據(jù)學(xué)生的不同情況,設(shè)計不同的問題,采用不同的方式,主動地去引導(dǎo)、啟發(fā)學(xué)生,可問他是怎樣想的?怎樣理解的?聽一聽他們的見解掌握他們的情況,并進(jìn)行有針對性,切合實際的個別輔導(dǎo),真正做到因材施教。這對于提高差生,大面積提高初中數(shù)學(xué)教學(xué)質(zhì)量是會起到一定作用的。差生形成的原因雖然是多方西的,但是學(xué)生的學(xué)習(xí)基礎(chǔ),學(xué)習(xí)興趣,學(xué)習(xí)動機(jī),學(xué)習(xí)方法等方面是值得引起我們注意的問題。只要老師堅持不懈,會逐漸增強(qiáng)學(xué)生的學(xué)習(xí)興趣,從而產(chǎn)生強(qiáng)烈的學(xué)習(xí)動機(jī),不斷地提高學(xué)習(xí)水平。

在教學(xué)教研上我積極參與聽課、評課,虛心向同行學(xué)習(xí)教學(xué)方法,博采眾長,提高教學(xué)水平。培養(yǎng)多種興趣愛好,博覽群書,不斷拓寬知識面,為教學(xué)內(nèi)容注入新鮮血液。

“金無足赤,人無完人”,在教學(xué)工作中難免有缺陷,例如,課堂語言平緩,平時考試較少,語言不夠生動。現(xiàn)在的社會對教師的素質(zhì)要求更高,在今后的教育教學(xué)工作中,我將更嚴(yán)格要求自己,努力工作,發(fā)揚(yáng)優(yōu)點,改正缺點,開拓前進(jìn),為美好的明天奉獻(xiàn)自己的力量。

初二數(shù)學(xué)分式知識點總結(jié)篇12

平面直角坐標(biāo)系:

在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。

水平的數(shù)軸稱為_軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。

平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合

三個規(guī)定:

①正方向的規(guī)定橫軸取向右為正方向,縱軸取向上為正方向

②單位長度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。

③象限的規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。

平面直角坐標(biāo)系的構(gòu)成

在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做_軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,_軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。

點的坐標(biāo)的性質(zhì)

建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的'一個點。

對于平面內(nèi)任意一點C,過點C分別向_軸、Y軸作垂線,垂足在_軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點C的坐標(biāo)。

一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。

初二數(shù)學(xué)分式知識點總結(jié)篇13

因式分解的一般步驟

如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運(yùn)用公式法;若是四項或四項以上的多項式,

通常采用分組分解法,最后運(yùn)用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。

因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④

因式分解與整式乘法的關(guān)系:m(a+b+c)

公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。

提取公因式步驟:

①確定公因式。②確定商式③公因式與商式寫成積的形式。

分解因式注意;

①不準(zhǔn)丟字母

②不準(zhǔn)丟常數(shù)項注意查項數(shù)

③雙重括號化成單括號

④結(jié)果按數(shù)單字母單項式多項式順序排列

⑤相同因式寫成冪的形式

⑥首項負(fù)號放括號外

⑦括號內(nèi)同類項合并。

初二數(shù)學(xué)分式知識點總結(jié)篇14

一.定義

1.一般地,如果一個正數(shù)_的平方等于a,即_2=a,那么這個正數(shù)_叫做a的算術(shù)平方根.a叫做被開方數(shù).

2.一般地,如果一個數(shù)的平方等于a,那么這個數(shù)叫做a的平方根或二次方根,求一個數(shù)a的平方根的運(yùn)算,叫做開平方.

3.一般地,如果一個數(shù)的立方等于a,那么這個數(shù)叫做a的立方根或三次方根.求一個數(shù)的立方根的運(yùn)算,叫做開立方.

4.任何一個有理數(shù)都可以寫成有限小數(shù)或無限循環(huán)小數(shù)的形式.任何有限小數(shù)或無限循環(huán)小數(shù)也都是有理數(shù).

5.無限不循環(huán)小數(shù)又叫無理數(shù).

6.有理數(shù)和無理數(shù)統(tǒng)稱實數(shù).

7.數(shù)軸上的點與實數(shù)一一對應(yīng).平面直角坐標(biāo)系中與有序?qū)崝?shù)對之間也是一一對應(yīng)的.

二.重點

1.平方與開平方互為逆運(yùn)算.

2.正數(shù)的平方根有兩個,它們互為相反數(shù),其中正的平方根就是這個數(shù)的算術(shù)平方根.

3.當(dāng)被開方數(shù)的小數(shù)點向右每移動兩位,它的算術(shù)平方根的小數(shù)點就向右移動一位.

4.當(dāng)被平方數(shù)小數(shù)點每向右移動三位,它的立方根小數(shù)點向右移動一位.

5.數(shù)a的相反數(shù)是-a[a為任意實數(shù)],一個正實數(shù)的絕對值是它本身,一個負(fù)實數(shù)的絕對值是它的相反數(shù);0的絕對值是0.

三.注意

1.被開方數(shù)一定是非負(fù)數(shù).

2.0,1的算術(shù)平方根是它本身;0的平方根是0,負(fù)數(shù)沒有平方根;正數(shù)的立方根是正數(shù),負(fù)數(shù)的立方根是負(fù)數(shù),0的立方根是0.

3.帶根號的無理數(shù)的整數(shù)倍或幾分之幾仍是無理數(shù);帶根號的數(shù)若開之后是有理數(shù)則是有理數(shù);任何一個有理數(shù)都能寫成分?jǐn)?shù)的形式.

以上就是數(shù)學(xué)網(wǎng)為大家提供的初二數(shù)學(xué)知識點總結(jié):實數(shù)希望能對考生產(chǎn)生幫助,更多資料請咨詢數(shù)學(xué)網(wǎng)中考頻道。

初二數(shù)學(xué)分式知識點總結(jié)篇15

一、軸對稱圖形

1.把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關(guān)于這條直線(成軸)對稱。

2.把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那么就說這兩個圖關(guān)于這條直線對稱。這條直線叫做對稱軸。折疊后重合的點是對應(yīng)點,叫做對稱點

3、軸對稱圖形和軸對稱的區(qū)別與聯(lián)系

4.軸對稱與軸對稱圖形的性質(zhì)

①關(guān)于某直線對稱的兩個圖形是全等形。

②如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點所連線段的垂直平分線。

③軸對稱圖形的對稱軸,是任何一對對應(yīng)點所連線段的垂直平分線。

④如果兩個圖形的對應(yīng)點連線被同條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。

⑤兩個圖形關(guān)于某條直線成軸對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上。

二、線段的垂直平分線

1.定義:經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。

2.性質(zhì):線段垂直平分線上的點與這條線段的兩個端點的距離相等

3.判定:與一條線段兩個端點距離相等的點,在線段的垂直平分線上

三、用坐標(biāo)表示軸對稱小結(jié):

1.在平面直角坐標(biāo)系中

①關(guān)于_軸對稱的點橫坐標(biāo)相等,縱坐標(biāo)互為相反數(shù);

②關(guān)于y軸對稱的點橫坐標(biāo)互為相反數(shù),縱坐標(biāo)相等;

③關(guān)于原點對稱的點橫坐標(biāo)和縱坐標(biāo)互為相反數(shù);

④與_軸或Y軸平行的直線的兩個點橫(縱)坐標(biāo)的關(guān)系;

⑤關(guān)于與直線_=C或Y=C對稱的坐標(biāo)

點(_,y)關(guān)于_軸對稱的點的坐標(biāo)為_(_,-y)_____.

點(_,y)關(guān)于y軸對稱的點的坐標(biāo)為___(-_,y)___.

2.三角形三條邊的垂直平分線相交于一點,這個點到三角形三個頂點的距離相等

四、(等腰三角形)知識點回顧

1.等腰三角形的性質(zhì)

①.等腰三角形的兩個底角相等。(等邊對等角)

②.等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)

理解:已知等腰三角形的一線就可以推知另兩線。

2、等腰三角形的判定:

如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)

五、(等邊三角形)知識點回顧

1.等邊三角形的性質(zhì):

等邊三角形的三個角都相等,并且每一個角都等于600。

2、等邊三角形的判定:

①三個角都相等的三角形是等邊三角形。

②有一個角是600的等腰三角形是等邊三角形。

3.在直角三角形中,如果一個銳角等于300,那么它所對的直角邊等于斜邊的一半。

初二數(shù)學(xué)分式知識點總結(jié)篇16

一、主要工作及取得的成績:

1、嚴(yán)謹(jǐn)備好每一節(jié)課。

人常說:功在課前,因此我在上課前認(rèn)真?zhèn)湔n,鉆研了《數(shù)學(xué)課程標(biāo)準(zhǔn)》、教材、教參,對學(xué)期教學(xué)內(nèi)容做到心中有數(shù),不但備學(xué)生而且備教材備教法。

學(xué)期中,著重進(jìn)行單元備課,掌握每一部分知識在單元中、在整冊書中的地位、作用,思考學(xué)生怎樣學(xué),學(xué)生將會產(chǎn)生什么疑難,該怎樣解決,在備課本中體現(xiàn)教師的引導(dǎo),學(xué)生的主動學(xué)習(xí)過程,充分理解課后習(xí)題的作用,設(shè)計好練習(xí)。

2、把好上課關(guān),提高課堂教學(xué)效率、質(zhì)量。新課標(biāo)的數(shù)學(xué)課通常采用“問題情境——建立模型——解釋、應(yīng)用與拓展”的模式展開,所有新知識的學(xué)習(xí)都以相關(guān)問題情境的研究作為開始,它們使學(xué)生了解與學(xué)習(xí)這些知識的有效切入點。

所以在課堂上我想方設(shè)法創(chuàng)設(shè)能吸引學(xué)生注意的情境。在這一學(xué)期,我根據(jù)教學(xué)內(nèi)容的實際創(chuàng)設(shè)情境,讓學(xué)生一上課就感興趣,每節(jié)課都有新鮮感。

3、虛心請教同組老師。在教學(xué)上,有疑必問。由于沒有新課標(biāo)教學(xué)經(jīng)驗,所以我的教學(xué)進(jìn)度總是落在其他老師之后。我虛心向他們請教每節(jié)課的好做法和需要注意什么問題,結(jié)合他們的意見和自己的思考結(jié)果,總結(jié)出每課教學(xué)的經(jīng)驗和巧妙的方法。本學(xué)期我將自己在備課中想到的好點子以及遇到的問題整理成“教學(xué)反思錄”。

4、多聽課、講公開課。在聽和講的過程中,可以學(xué)到很多很多適合自己的東西,也可以暴露一些自己平時感覺不到的問題,這是我到實驗中學(xué)來后最深的體會。使我對以后的教學(xué)更加充滿了信心。

5、作業(yè)及時批改,對于作業(yè)存在的問題及時糾正。課后作業(yè)是不可缺的一部分是反饋當(dāng)天所學(xué)內(nèi)容的方法,因此作業(yè)必須勤批改并做到有錯必改的好習(xí)慣。

二、存在問題和今后努力方向:

1、新課標(biāo)學(xué)習(xí)與鉆研還要加強(qiáng);

2、課堂教學(xué)設(shè)計、研究、效果方面還要考慮;

3、多媒體技術(shù)在課堂教學(xué)中的使用還有待提高;

4、“培優(yōu)、輔中、穩(wěn)差”的方法方式還有待完善。

初二數(shù)學(xué)分式知識點總結(jié)篇17

一、算術(shù)平方根的概念

正數(shù)a有兩個平方根(表示為?根,表示為a。0的平方根也叫做0的算術(shù)平方根,因此0的算術(shù)平方根是0,即0?!笔撬阈g(shù)平方根的符號,a就表示a的算術(shù)平方根。a的意義有兩點:a,我們把其中正的平方根,叫做a的算術(shù)平方

(1)被開方數(shù)a表示非負(fù)數(shù),即a≥0;

(2)a也表示非負(fù)數(shù),即a≥0。也就是說,非負(fù)數(shù)的“算術(shù)”平方根是非負(fù)數(shù)。負(fù)數(shù)不存在算術(shù)平方根,即a0時,a無意義。

如:=3,8是64的算術(shù)平方根,6無意義。9既表示對9進(jìn)行開平方運(yùn)算,也表示9的正的平方根。

二、平方根與算術(shù)平方根的區(qū)別在于

①定義不同;

②個數(shù)不同:一個正數(shù)有兩個平方根,而一個正數(shù)的算術(shù)平方根只有一個;

③表示方法不同:正數(shù)a的平方根表示為?a,正數(shù)a的算術(shù)平方根表示為a;

④取值范圍不同:正數(shù)的算術(shù)平方根一定是正數(shù),正數(shù)的平方根是一正一負(fù)。

⑤0的平方根與算術(shù)平方根都是0。

初二數(shù)學(xué)分式知識點總結(jié)篇18

(1)正比例函數(shù):一般地,形如y=k_(k是常數(shù),k?0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù);

(2)正比例函數(shù)圖像特征:一些過原點的直線;

(3)圖像性質(zhì):

①當(dāng)k>0時,函數(shù)y=k_的圖像經(jīng)過第一、三象限,從左向右上升,即隨著_的增大y也增大;②當(dāng)k0,向上平移;當(dāng)b0時,直線y=k_+b由左至右上升,即y隨著_的增大而增大;

③當(dāng)k0時,直線y=k_+b與y軸正半軸有交點為(0,b);

⑤當(dāng)b

(10)求一次函數(shù)的解析式:即要求k與b的值;

(11)畫一次函數(shù)的圖像:已知兩點;

初二數(shù)學(xué)分式知識點總結(jié)篇19

實數(shù)

無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)

平方根:

①如果一個正數(shù)_的平方等于A,那么這個正數(shù)_就叫做A的算術(shù)平方根。

②如果一個數(shù)_的平方等于A,那么這個數(shù)_就叫做A的平方根。

③一個正數(shù)有2個平方根/0的平方根為0/負(fù)數(shù)沒有平方根。

④求一個數(shù)A的平方根運(yùn)算,叫做開平方,其中A叫做被開方數(shù)。

立方根:

①如果一個數(shù)_的立方等于A,那么這個數(shù)_就叫做A的立方根。

②正數(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。

③求一個數(shù)A的立方根的運(yùn)算叫開立方,其中A叫做被開方數(shù)。

實數(shù):

①實數(shù)分有理數(shù)和無理數(shù)。

②在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。

③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。

初二數(shù)學(xué)分式知識點總結(jié)篇20

(一)運(yùn)用公式法:

我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。于是有:

a2-b2=(a+b)(a-b)

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運(yùn)用公式法。

(二)平方差公式

1.平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)語言:兩個數(shù)的平方差,等于這兩個數(shù)的`和與這兩個數(shù)的差的積。這個公式就是平方差公式。

(三)因式分解

1.因式分解時,各項如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。

2.因式分解,必須進(jìn)行到每一個多項式因式不能再分解為止。

(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:

a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方。

把a(bǔ)2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。

上面兩個公式叫完全平方公式。

(2)完全平方式的形式和特點

①項數(shù):三項

②有兩項是兩個數(shù)的的平方和,這兩項的符號相同。

③有一項是這兩個數(shù)的積的兩倍。

(3)當(dāng)多項式中有公因式時,應(yīng)該先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。

(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。

(五)分組分解法

我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續(xù)分解,所以

原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)

=(m+n)(a+b).

這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組并提取公因式后它們的另一個因式正好相同,那么這個多項式就可以用分組分解法來分解因式.

(六)提公因式法

1.在運(yùn)用提取公因式法把一個多項式因式分解時,首先觀察多項式的結(jié)構(gòu)特點,確定多項式的公因式.當(dāng)多項式各項的公因式是一個多項式時,可以用設(shè)輔助元的方法把它轉(zhuǎn)化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當(dāng)多項式各項的公因式是隱含的時候,要把多項式進(jìn)行適當(dāng)?shù)淖冃?,或改變符號,直到可確定多項式的公因式.

2.運(yùn)用公式_2+(p+q)_+pq=(_+q)(_+p)進(jìn)行因式分解要注意:

1.必須先將常數(shù)項分解成兩個因數(shù)的積,且這兩個因數(shù)的代數(shù)和等于

一次項的系數(shù).

2.將常數(shù)項分解成滿足要求的兩個因數(shù)積的多次嘗試,一般步驟:

①列出常數(shù)項分解成兩個因數(shù)的積各種可能情況;

②嘗試其中的哪兩個因數(shù)的和恰好等于一次項系數(shù).

3.將原多項式分解成(_+q)(_+p)的形式.

(七)分式的乘除法

1.把一個分式的分子與分母的公因式約去,叫做分式的約分.

2.分式進(jìn)行約分的目的是要把這個分式化為最簡分式.

3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.

4.分式約分中注意正確運(yùn)用乘方的符號法則,如_-y=-(y-_),(_-y)2=(y-_)2,

(_-y)3=-(y-_)3.

5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然后再按-1的偶次方為正、奇次方為負(fù)來處理.當(dāng)然,簡單的分式之分子分母可直接乘方.

6.注意混合運(yùn)算中應(yīng)先算括號,再算乘方,然后乘除,最后算加減.

(八)分?jǐn)?shù)的加減法

1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論