版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023/9/21.直線和圓有幾種不同的位置關(guān)系?各是怎樣定義的?
答:直線和圓有三種不同的位置關(guān)系即直線和圓相離、相切、相交。
在各種位置關(guān)系中,是用直線和圓的公共點(diǎn)的個(gè)數(shù)來定義的。相交相切相離復(fù)習(xí)提問2023/9/22.直線和圓的各種位置關(guān)系中,圓心距和半徑各有什么相應(yīng)的數(shù)量關(guān)系?若設(shè)⊙O的半徑為r,圓心O到直線l距離為d,則:直線l和⊙O相交直線l和⊙O相切直線l和⊙O相離d>rd=rd<r復(fù)習(xí)提問2023/9/2
觀察演示,考察兩圓的位置關(guān)系并觀察兩圓公共點(diǎn)的個(gè)數(shù)。2023/9/2⑴⑵⑶⑷⑸⑹2023/9/2考察兩圓的位置關(guān)系并觀察兩圓公共點(diǎn)的個(gè)數(shù)。第一種情況兩圓沒有公共點(diǎn),每一個(gè)圓上的點(diǎn)都在另一個(gè)圓的外部。叫做兩圓外離特點(diǎn):2023/9/2第三種情況兩圓有兩個(gè)公共點(diǎn)第二種情況特點(diǎn):兩圓有唯一個(gè)公共點(diǎn),并且除了這個(gè)點(diǎn)這外,每一個(gè)圓上的點(diǎn)都在另一個(gè)圓的外部,叫做這兩圓外切。這個(gè)點(diǎn)叫切點(diǎn)特點(diǎn):叫做兩圓相交2023/9/2第四種情況特點(diǎn):兩圓有唯一的公共點(diǎn),除了這個(gè)點(diǎn)以外,一個(gè)圓上一的所有點(diǎn)在另一個(gè)圓的內(nèi)部,第五種情況特點(diǎn):叫做兩圓內(nèi)切。兩圓沒有公共點(diǎn),并且一個(gè)圓上的所有點(diǎn)都在另一個(gè)圓的內(nèi)部,叫做兩圓內(nèi)含2023/9/21)兩個(gè)圓沒有公共點(diǎn),并且每個(gè)圓上的點(diǎn)都在另一個(gè)圓的外部時(shí),叫做這兩圓外離。2)兩個(gè)圓有唯一的公共點(diǎn),并且除了這個(gè)公共點(diǎn)以外,每個(gè)圓上的點(diǎn)都在另一個(gè)圓的外部時(shí),叫做這兩個(gè)外切。這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。3)兩個(gè)圓有兩個(gè)公共點(diǎn)時(shí),叫做這兩個(gè)圓相交4)兩個(gè)圓有唯一的公共點(diǎn),并且除了這個(gè)公共點(diǎn)以外,一個(gè)圓上的點(diǎn)都在另一個(gè)圓的內(nèi)部時(shí),叫做這兩個(gè)圓內(nèi)切。這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。5)兩個(gè)圓沒有公共點(diǎn),并且一個(gè)圓上的點(diǎn)都在另一個(gè)圓的內(nèi)部時(shí),叫做這兩個(gè)圓內(nèi)含。
兩圓同心是兩圓內(nèi)含的一種特例。2023/9/2
我們知道,圓是軸對(duì)稱圖形,兩個(gè)圓也是組成一個(gè)軸對(duì)稱圖形,通過兩圓圓心的直線(連心線)是它們的對(duì)稱軸。由此可知,如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上。02T010201.T...2023/9/2
⊙A和⊙B外離d>R+rAB設(shè)⊙A的半徑為R,⊙B的半徑為r,圓心距為d新課講解2023/9/2AB
⊙A和⊙B外切d=R+r設(shè)⊙A的半徑為R,⊙B的半徑為r,圓心距為d新課講解2023/9/2ABR-r<d<R+r
⊙A和⊙B相交設(shè)⊙A的半徑為R,⊙B的半徑為r,圓心距為d新課講解2023/9/2AB
⊙A和⊙B內(nèi)切d=R-r設(shè)⊙A的半徑為R,⊙B的半徑為r,圓心距為d新課講解2023/9/2
⊙A和⊙B內(nèi)含d<R-rAB設(shè)⊙A的半徑為R,⊙B的半徑為r,圓心距為d新課講解2023/9/2
例:如圖⊙O的半徑為5cm,點(diǎn)P是⊙O外一點(diǎn),OP=8cm。求:(1)以P為圓心作⊙P與⊙O外切,小圓⊙P的半徑是多少?(2)以P為圓心作⊙P與⊙O內(nèi)切,大圓⊙P的半徑是多少?解:(1)設(shè)⊙O與⊙P外切于點(diǎn)A,則PA=OP-OA∴PA=3cm(2)設(shè)⊙O與⊙P內(nèi)切于點(diǎn)B,則PB=OP+OB∴PB=13cm.0PAB..2023/9/2課堂練習(xí)⊙O1
和⊙O2的半徑分別為3厘米和4厘米,
在下列條件下,求⊙O1
和⊙O2的位置關(guān)系:外離(2)O1O2=7厘米(3)O1O2=5厘米(4)O1O2=1厘米(5)O1O2=0.5厘米(6)O1和O2重合外切相交內(nèi)切內(nèi)含同心(1)O1O2=8厘米2023/9/2
定圓0的半徑是4cm,動(dòng)圓P的半徑是1cm,(1)設(shè)⊙P和⊙0相外切,那么點(diǎn)P與點(diǎn)O的距離是多少?點(diǎn)P可以在什么樣的線上運(yùn)動(dòng)?(2)設(shè)⊙P和⊙O相內(nèi)切,情況又怎樣?
(1)解:∵⊙0和⊙P相外切∴OP=R+r∴OP=5cm∴P點(diǎn)在以O(shè)點(diǎn)為圓心,以5cm
為半徑的圓上運(yùn)動(dòng)練習(xí)2
(2)解:∵⊙0和⊙P相內(nèi)切∴OP=R-r∴OP=3cm∴P點(diǎn)在以O(shè)點(diǎn)為圓心,以3cm
為半徑的圓上運(yùn)動(dòng)2023/9/2
兩個(gè)圓的半徑的比為2:3,內(nèi)切時(shí)圓心距等于8cm,那么這兩圓相交時(shí),圓心距d的取值范圍是多少?
解設(shè)大圓半徑R=3x,則小圓半徑r=2x依題意得:
3x-2x=8x=8∴R=24cmr=16cm∵兩圓相交R-r<d<R+r∴8cm<d<40cm練習(xí)32023/9/2
解∵兩圓相交∴R-r<d<R+r△=b2-4ac=[-2(d-R)]2-4r2=4(d-R)2-4r2=4(d-R+r)(d-R-r)=4[d-(R-r)][d-(R+r)]∵d-(R-r)>0d-(R+r)<0∴4[d-(R-r)][d-(R+r)]<0∴方程沒有實(shí)數(shù)根
已知⊙01和⊙02的半徑分別為R和r(R>r),圓心距為d,若兩圓相交,試判定關(guān)于x的方程x2-2(d-R)x+r2=0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 法律法規(guī)經(jīng)濟(jì)與施工-二級(jí)注冊(cè)建筑師《法律、法規(guī)、經(jīng)濟(jì)與施工》押題密卷3
- 長(zhǎng)春版語文三年級(jí)上冊(cè)教案
- 老年人用藥提醒助手
- 海洋生物醫(yī)藥產(chǎn)業(yè)布局
- 2024屆遼寧省本溪某中學(xué)高考化學(xué)押題試卷含解析
- 2024高中物理第三章傳感器章末質(zhì)量評(píng)估含解析粵教版選修3-2
- 2024高中語文第5單元莊子蚜第2課鵬之徙于南冥訓(xùn)練含解析新人教版選修先秦諸子蚜
- 2024高中語文第五課言之有“理”第3節(jié)有話“好好說”-修改蹭訓(xùn)練含解析新人教版選修語言文字應(yīng)用
- 2024高中語文綜合閱讀訓(xùn)練2含解析新人教版選修先秦諸子蚜
- 2024高考化學(xué)一輪復(fù)習(xí)第9章化學(xué)實(shí)驗(yàn)基礎(chǔ)第29講化學(xué)實(shí)驗(yàn)基礎(chǔ)知識(shí)和技能精練含解析
- 鋼鐵生產(chǎn)企業(yè)溫室氣體核算與報(bào)告案例
- 農(nóng)業(yè)合作社全套報(bào)表(已設(shè)公式)-資產(chǎn)負(fù)債表-盈余及盈余分配表-成員權(quán)益變動(dòng)表-現(xiàn)金流量表
- 深入淺出Oracle EBS之OAF學(xué)習(xí)筆記-Oracle EBS技術(shù)文檔
- 貝利嬰幼兒發(fā)展量表BSID
- 四年級(jí)計(jì)算題大全(列豎式計(jì)算,可打印)
- 人教部編版八年級(jí)歷史下冊(cè)第7課 偉大的歷史轉(zhuǎn)折課件(共25張PPT)
- 年會(huì)主持詞:企業(yè)年會(huì)主持詞
- SB/T 10863-2012家用電冰箱維修服務(wù)技術(shù)規(guī)范
- GB/T 9119-2000平面、突面板式平焊鋼制管法蘭
- 2020年《小學(xué)德育教育校本課程》版
- 偏癱患者的臨床護(hù)理及康復(fù)評(píng)估課件
評(píng)論
0/150
提交評(píng)論