![香港大學(xué)量子化學(xué)_第1頁](http://file4.renrendoc.com/view/6890d9f5f9584ee1e21475b68d89843d/6890d9f5f9584ee1e21475b68d89843d1.gif)
![香港大學(xué)量子化學(xué)_第2頁](http://file4.renrendoc.com/view/6890d9f5f9584ee1e21475b68d89843d/6890d9f5f9584ee1e21475b68d89843d2.gif)
![香港大學(xué)量子化學(xué)_第3頁](http://file4.renrendoc.com/view/6890d9f5f9584ee1e21475b68d89843d/6890d9f5f9584ee1e21475b68d89843d3.gif)
![香港大學(xué)量子化學(xué)_第4頁](http://file4.renrendoc.com/view/6890d9f5f9584ee1e21475b68d89843d/6890d9f5f9584ee1e21475b68d89843d4.gif)
![香港大學(xué)量子化學(xué)_第5頁](http://file4.renrendoc.com/view/6890d9f5f9584ee1e21475b68d89843d/6890d9f5f9584ee1e21475b68d89843d5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
ComputationalChemistryG.H.CHENDepartmentofChemistryUniversityofHongKongIn1929,Diracdeclared,“Theunderlyingphysicallawsnecessaryforthemathematicaltheoryof...thewholeofchemistryarethuscompletelyknow,andthedifficultyisonlythattheexactapplicationoftheselawsleadstoequationsmuchtoocomplicatedtobesoluble.”BeginningofComputationalChemistryTheoryisreality! W.A.GoddardIIIDiracComputationalChemistryQuantumChemistryMolecularMechanicsBioinformatics
Create&AnalyseBio-information
Schr?dingerEquationF=MaMulliken,1966Fukui,1981Hoffmann,1981Pople,1998Kohn,1998NobelPrizesforComputationalChemsitryComputationalChemistryIndustryCompanySoftwareGaussianInc. Gaussian94,Gaussian98Schr?dingerInc. JaguarWavefunction SpartanQ-Chem Q-ChemAccelrys InsightII,Cerius2HyperCube HyperChemCeleraGenomics(Dr.CraigVenter,formalProf.,SUNY,Baffalo;98-01)Applications:materialdiscovery,drugdesign&researchR&DinChemical&Pharmaceuticalindustriesin2000:US$80billionBioinformatics:TotalSalesin2001 US$225million ProjectSalesin2006 US$1.7billionLODESTARv1.02--LocalizedDensityMatrix:STARperformerhttp://yangtze.hku.hkSoftwareDevelopmentatHKUQuantumChemistryMethodsAbinitiomolecularorbitalmethodsSemiempiricalmolecularorbitalmethodsDensityfunctionalmethodH
y=E
ySchr?dingerEquationHamiltonianH=
(-h2/2ma)
2-(h2/2me)
i
i2
+
ZaZbe2/rab-
i
Zae2/ria
+
i
j
e2/rijWavefunctionEnergyVitaminCC60CytochromechemeOH+D2-->HOD+D
energyC60andSuperconductorApplications:Magnet,Magnetictrain,PowertransportationWhatissuperconductor?ElectricalCurrentflowsforever!SoccerBallCrystalStructureofC60solidCrystalStructureofK3C60
K3C60isaSuperconductor(Tc=19K)Erwin&Pickett,Science,1991GHChen,Ph.D.Thesis,Caltech(1992)VibrationSpectrumofK3C60EffectiveAttraction!VibrationofAtomsThemechanismofsuperconductivityinK3C60wasdiscoveredusingcom-putationalchemistrymethodsVarmaet.al.,1991;Schluteret.al.,1992;Dresselhauset.al.,1992;Chen&Goddard,1992CarbonNanotubes(Ijima,1991)STMImageofCarbonNanotubes(Wildoeret.al.,1998)CalculatedSTMImageofaCarbonNanotube(Rubio,1999)ComputerSimulations(Saito,Dresselhaus,Louieet.al.,1992)CarbonNanotubes(n,m): Conductor, ifn-m=3II=0,±1,±2,±3,…;or Semiconductor,ifn-m
3IMetallicCarbonNanotubes: ConductingWiresSemiconductingNanotubes: TransistorsMolecular-scalecircuits! 1nmtransistor!0.13μmtransistor!30nmtransistor!Wildoer,Venema,Rinzler,Smalley,Dekker,Nature391,59(1998)ExperimentalConfirmations:Lieberet.al.1993;Dravidet.al.,1993;Iijimaet.al.1993;Smalleyet.al.1998;Haddonet.al.1998;Liuet.al.1999Science9thNovember,2001Logicgates(andcircuits)withcarbonnanotucetransistorScience7thJuly,2000Carbonnanotube-BasednonvolatileRAMformolecularcomputingNanoelectromechanicalSystems(NEMS)K.E.Drexler,Nanosystems:MolecularMachinery,ManufacturingandComputation(Wiley,NewYork,1992).LargeGearDrivesSmallGearG.Honget.al.,1999Nano-oscillatorsZhao,Ma,Chen&Jiang,Phys.Rev.Lett.2003NanoscopicElectromechanicalDevice (NEMS)HibernationAwakeningOscillationQuantummechanicalinvestigationofthefieldemissionfromthetipsofcarbonnanotubesZettl,PRL2001Zheng,Chen,Li,Deng&Xu,Phys.Rev.Lett.2004Computer-AidedDrugDesignGENOMICSHumanGenomeProjectDrugDiscoveryALDOSEREDUCTASEDiabetesDiabeticComplicationsGlucoseSorbitolDesignofAldoseReductaseInhibitorsAldoseReductaseInhibitorHu&Chen,2003DatabaseforFunctionalGroupsLogIC50:0.6382,1.0LogIC50:0.6861,0.88
Prediction:DrugLeadsStructure-activity-relationLogIC50:0.77,1.1LogIC50:-1.87,4.05LogIC50:-2.77,4.14LogIC50:0.68,0.88PredictionResultsusingAutoDockHu&Chen,2003Computer-aideddrugdesignChemicalSynthesisScreeningusinginvitroassayAnimalTestsClinicalTrialsBioinformaticsImprovecontent&utilityofbio-databasesDeveloptoolsfordatageneration,capture&annotationDeveloptoolsforcomprehensivefunctionalstudiesDeveloptoolsforrepresenting&analyzingsequencesimilarity&variationComputationalChemistryIncreasinglyimportantfieldinchemistryHelptounderstandexperimentalresultsProvideguidelinestoexperimentistsApplicationinMaterials&PharmaceuticalindustriesFuture:simulatenano-sizematerials,bulkmaterials;replaceexperimentalR&DObjective:Moreandmoreresearch&developmenttobeperformedoncomputersandInternetinsteadinthelaboratoriesQuantumChemistryG.H.ChenDepartmentofChemistryUniversityofHongKongContributors:
Hartree,Fock,Slater,Hund,Mulliken,Lennard-Jones,Heitler,London,Brillouin,Koopmans,Pople,KohnApplication:
Chemistry,CondensedMatterPhysics,MolecularBiology,MaterialsScience,DrugDiscoveryEmphasis
Hartree-Fockmethod Concepts Hands-onexperienceTextBook
“QuantumChemistry”,4thEd. IraN.Levinehttp://yangtze.hku.hk/lecture/chem3504-3.pptContents
1.VariationMethod2.Hartree-FockSelf-ConsistentFieldMethod3.PerturbationTheory4.SemiempiricalMethodsTheVariationMethodConsiderasystemwhoseHamiltonianoperatorHistimeindependentandwhoselowest-energyeigenvalueisE1.Iffisanynormalized,well-behavedfunctionthatsatisfiestheboundaryconditionsoftheproblem,then
f*H
fdt>
E1ThevariationtheoremProof:Expandfinthebasisset{yk}
f=
k
akykwhere
{ak}arecoefficients
Hyk=Ekykthen
f*H
fdt=
k
j
ak*ajEjdkj
=
k|ak|2
Ek
>E1
k|ak|2=E1
Sinceisnormalized,
f*fdt=
k|ak|2=1
i.f:trialfunctionisusedtoevaluatetheupperlimit
ofgroundstateenergyE1ii.f
=groundstatewavefunction,
f*H
fdt=E1iii.optimizeparamemtersinfbyminimizing
f*H
fdt/
f*fdt
Requirementsforthetrialwavefunction:i.zeroatboundary;ii.smoothness
amaximuminthecenter.
Trialwavefunction:f=x(l-x)Applicationtoaparticleinaboxofinfinitedepth0l
*H
dx=-(h2/8
2m)
(lx-x2)d2(lx-x2)/dx2dx =h2/(4
2m)
(x2-lx)
dx =h2l3/(24
2m)
*
dx=
x2(l-x)2dx=l5/30 E
=5h2/(4
2l2m)
h2/(8ml2)=E1(1)Constructawavefunction
(c1,c2,
,cm)(2)Calculatetheenergyof
:
E
E
(c1,c2,
,cm)(3)Choose{cj*}(i=1,2,
,m)sothatE
isminimum
VariationalMethodExample:one-dimensionalharmonicoscillator
Potential:V(x)=(1/2)kx2=(1/2)m
2x2=2
2m
2x2Trialwavefunctionforthegroundstate:
(x)=exp(-cx2)
*H
dx=-(h2/8
2m)
exp(-cx2)d2[exp(-cx2)]/dx2dx+2
2m
2
x2exp(-2cx2)dx=(h2/4
2m)(
c/8)1/2+
2m
2(
/8c3)1/2
*
dx=
exp(-2cx2)dx=(
/2)1/2c-1/2 E
=W=(h2/8
2m)c+(
2/2)m
2/cTominimizeW, 0=dW/dc=h2/8
2m-(
2/2)m
2c-2 c=2
2
m/h W
=(1/2)h
. . .
E3
y3 E2
y2 E1
y1ExtensionofVariationMethodForawavefunctionfwhichisorthogonaltothegroundstatewavefunctiony1,i.e.
dt
f*y1=0Ef=
dt
f*Hf/
dt
f*f
>
E2
thefirstexcitedstateenergyThetrialwavefunctionf:
dt
f*y1=0
f=
k=1ak
yk
dt
f*y1=|a1|2=0
Ef=
dt
f*Hf/
dt
f*f=
k=2|ak|2Ek/
k=2|ak|2
>
k=2|ak|2E2/
k=2|ak|2=E2
e
++
y1y2f=c1y1+c2y2W=
f*Hfdt/
f*fdt
=(c12
H11+2c1c2
H12
+c22
H22)/(c12+2c1c2
S
+c22)
W(c12+2c1c2
S
+c22)=c12
H11+2c1c2
H12
+c22
H22ApplicationtoH2+Partialderivativewithrespecttoc1
(
W/
c1=0):
W(c1+Sc2)=c1H11+c2H12
Partialderivativewithrespecttoc2
(
W/
c2=0):W(Sc1+c2)=c1H12+c2H22
(H11-W)c1+(H12-SW)c2=0(H12-SW)c1+(H22-
W)c2=0Tohavenontrivialsolution:
H11-W H12-SW H12-SW H22-
W
ForH2+,
H11=H22;H12<0.
GroundState:Eg=W1=(H11+H12)/(1+S)
f1
=(y1+y2)/
2(1+S)1/2
ExcitedState:Ee=W2=(H11-H12)/(1-S)
f2
=(y1-y2)/
2(1-S)1/2
=0bondingorbitalAnti-bondingorbital
Results:De=1.76eV,Re=1.32A
Exact:De=2.79eV,Re=1.06A
1eV=23.0605kcal/molTrialwavefunction:k3/2
p-1/2
exp(-kr)
Eg=W1(k,R)
ateachR,choosek
sothat
W1/
k=0Results: De=2.36eV,Re=1.06A
Resutls:De=2.73eV,Re=1.06A1s2pInclusionofotheratomicorbitalsFurtherImprovements
H p-1/2
exp(-r)He+ 23/2
p-1/2
exp(-2r)Optimizationof1sorbitals
a11x1+a12x2=b1a21x1+a22x2=b2
(a11a22-a12a21)x1=b1a22-b2a12(a11a22-a12a21)x2=b2a11-b1a21LinearEquations1.twolinearequationsfortwounknown,x1andx2Introducingdeterminant:
a11 a12
=a11a22-a12a21 a21 a22
a11 a12
b1 a12
x1= a21 a22
b2 a22
a11 a12
a11 b1
x2=
a21 a22
a21 b2
Ourcase:b1=b2=0,homogeneous
1.trivialsolution:x1=x2=0
2.nontrivialsolution:
a11 a12
=0 a21 a22
nlinearequationsfornunknownvariablesa11x1+a12x2+...+a1nxn=b1a21x1+a22x2+...+a2nxn=b2an1x1+an2x2+...+annxn=bn
a11 a12 ...a1,k-1b1a1,k+1 ...a1n a21 a22 ...a2,k-1b2a2,k+1 ...a2ndet(aij)xk=. . .... .. .... an1 an2 ...an,k-1b2an,k+1 ...ann
where, a11 a12 ... a1n
a21 a22 ... a2n
det(aij)= . . ... . an1 an2 ... ann
a11 a12 ... a1,k-1 b1 a1,k+1 ... a1n a21 a22 ... a2,k-1 b2 a2,k+1 ... a2n . . ... . . . ... . an1 an2 ... an,k-1 b2 an,k+1 ... annxk= det(aij)
inhomogeneouscase:bk=0foratleastonek(a)travialcase:xk=0,k=1,2,...,n(b)nontravialcase:det(aij)=0
homogeneouscase:bk=0,k=1,2,...,nForan-thorderdeterminant, ndet(aij)=
alkClkl=1
where,ClkiscalledcofactorTrialwavefunctionfisavariationfunctionwhichisacombinationofnlinearindependentfunctions{f1,f2,...fn},
f=c1f1+c2f2+...+cnfn
n
[(Hik-SikW)ck]=0i=1,2,...,n
k=1 Sik
dt
fifk Hik
dt
fiHfk W
dtfH
f/
dtff
(i)W1
W2
...
Wn
arenrootsofEq.(1),(ii)E1
E2
...
En
En+1
...areenergies
ofeigenstates;
then,W1
E1,W2
E2,...,Wn
EnLinearvariationaltheoremMolecularOrbital(MO):
=c1
1+c2
2
(H11-W)c1+(H12-SW)c2=0
S11=1
(H21-SW)c1+(H22-W)c2=0
S22=1Generally:
i
asetofatomicorbitals,basissetLCAO-MO
=c1
1+c2
2++cn
nlinearcombinationofatomicorbitalsn
(Hik-SikW)ck=0i=1,2,,nk=1Hik
dt
i*H
k
Sik
dt
i*
k Skk=1Hamiltonian
H=
(-h2/2ma)
2-(h2/2me)
i
i2
+
ZaZbe2/rab-
i
Zae2/ria
+
i
j
e2/rij
Hy(ri;ra)=Ey(ri;ra)TheBorn-OppenheimerApproximation(1)y(ri;ra)=yel(ri;ra)yN(ra)(2)Hel(ra)=-(h2/2me)
i
i2
-
i
Zae2/ria
+
i
j
e2/rij
VNN=
bZaZbe2/rabHel(ra)
yel(ri;ra)=Eel(ra)
yel(ri;ra)(3)HN=
(-h2/2ma)
2+
U(ra)U(ra)=Eel(ra)+VNNHN(ra)
yN(ra)=EyN(ra)TheBorn-OppenheimerApproximation:AssignmentCalculatethegroundstateenergyandbondlengthofH2usingtheHyperChemwiththe6-31G(Hint:Born-OppenheimerApproximation)
e
++
etwoelectronscannotbeinthesamestate.HydrogenMoleculeH2ThePauliprincipleSincetwowavefunctionsthatcorrespondtothesamestatecandifferatmostbyaconstantfactor
f(1,2)=c2
f(2,1)
ja(1)jb(2)+c1ja(2)jb(1)=c2ja(2)jb(1)+c2c1ja(1)jb(2)c1=c2 c2c1=1Therefore:
c1=c2=
1AccordingtothePauliprinciple, c1=c2=-1Wavefunction:f(1,2)=ja(1)jb(2)+c1ja(2)jb(1)f(2,1)=ja(2)jb(1)+c1ja(1)jb(2)
WavefunctionfofH2:
y(1,2)=1/
2![f(1)a(1)f(2)b(2)-f(2)a(2)f(1)b(1)]f(1)a(1)f(2)a(2)=1/
2!
f(1)b(1)f(2)b(2)ThePauliprinciple(differentversion)thewavefunctionofasystemofelectronsmustbeantisymmetricwithrespecttointerchangingofanytwoelectrons.SlaterDeterminantE
=2
dt1f*(1)(Te+VeN)f(1)+VNN
+
dt1dt2|f2(1)|e2/r12|f2(2)|=
i=1,2
fii+J12+VNN
TominimizeE
undertheconstraint
dt|f2|
=1,use
Lagrange’smethod:
L=E
-2e[
dt1|f2(1)|
-1]dL=dE
-4e
dt1f*(1)df(1)
=4
dt1df*(1)(Te+VeN)f(1)+4
dt1dt2f*(1)f*(2)e2/r12f(2)df(1) -4e
dt1f*(1)df(1)=0
Energy:E
[Te+VeN+
dt2f*(2)e2/r12f(2)]f(1)=ef(1)
(f+J)f=eff(1)=Te(1)+VeN(1) oneelectronoperatorJ(1)=
dt2f*(2)e2/r12f(2)twoelectronCoulomboperator
AverageHamiltonianHartree-Fockequationf(1)istheHamiltonianofelectron1intheabsenceofelectron2;J(1)isthemeanCoulombrepulsionexertedonelectron1by2;e
istheenergyoforbitalf.LCAO-MO: f=c1y1+c2y2
Multipley1fromtheleftandthenintegrate:c1F11+c2F12=e(c1+Sc2)Multipley2
fromtheleftandthenintegrate:
c1F12+c2F22=e(Sc1+c2)
where,
Fij=
dtyi*
(f+J
)yj=Hij+
dtyi*
J
yjS=
dty1
y2 (F11-e)c1+(F12-Se)c2=0 (F12-Se)c1+(F22-
e)c2=0SecularEquation:
F11-e
F12-Se
=0
F12-Se
F22-
e
bondingorbital: e1=(F11+F12)/(1+S)
f1
=(y1+y2)/
2(1+S)1/2
antibondingorbital: e2=(F11-F12)/(1-S)
f2
=(y1-y2)/
2(1-S)1/2MolecularOrbitalConfigurationsofHomonuclearDiatomicMoleculesH2,Li2,O,He2,etcMoeculeBondorderDe/eVH2+
2.79
H214.75He2+1.08He200.0009Li211.07Be200.10C226.3N2+
8.85N239.91O2+26.78O225.21ThemoretheBondOrderis,thestrongerthechemicalbondis.BondOrder:one-halfthedifferencebetweenthenumberofbondingandantibondingelectrons
f1
f2
f1(1)a(1)f2(1)a(1)y(1,2)=1/
2
f1(2)a(2)f2(2)a(2)=1/
2[f1(1)f2(2)-f2(1)
f1(2)]a(1)a(2)
Ey=
dt1dt2y*Hy=
dt1dt2y*(T1+V1N+T2+V2N+V12+VNN)y=<f1(1)|T1+V1N|f1(1)>+<f2(2)|T2+V2N|f2(2)>+<f1(1)f2(2)|V12|f1(1)f2(2)>-<f1(2)f2(1)|V12|f1(1)f2(2)>+VNN=
i
<fi(1)|T1+V1N|fi(1)>
+<f1(1)f2(2)|V12|f1(1)f2(2)>-<f1(2)f2(1)|V12|f1(1)f2(2)>+
VNN=
i=1,2
fii+J12-
K12+VNNParticleOne:
f(1)+J2(1)
-
K2(1)ParticleTwo: f(2)+J1(2)
-
K1(2)
f(j)
-(h2/2me)
j2-
Za/rja
Jj(1)q(1)
q(1)
dr2fj*(2)e2/r12fj(2)
Kj(1)q(1)
fj(1)
dr2fj*(2)e2/r12q(2)AverageHamiltonian[f(1)+J2(1)-
K2(1)]f1(1)=e1f1(1)[f(2)+J1(2)-
K1(2)]f2(2)=e2f2(2)F(1)
f(1)+J2(1)-
K2(1) Fockoperatorfor1F(2)
f(2)+J1(2)-
K1(2) Fockoperatorfor2
Hartree-FockEquation:FockOperator:1. AttheHartree-FockLeveltherearetwopossible Coulombintegralscontributingtheenergybetween twoelectronsiandj:CoulombintegralsJijand exchangeintegralKij;
2. Fortwoelectronswithdifferentspins,thereisonly CoulombintegralJij;3.Fortwoelectronswiththesamespins,both Coulombandexchangeintegralsexist. Summary4. TotalHartree-Fockenergyconsistsofthe contributionsfromone-electronintegralsfiiand two-electronCoulombintegralsJijandexchange integralsKij;
5. AttheHartree-FockLeveltherearetwopossible Coulombpotentials(oroperators)betweentwo electronsiandj:Coulomboperatorandexchange operator;Jj(i)istheCoulombpotential(operator) thatifeelsfromj,andKj(i)istheexchange potential(operator)thatthatifeelsfromj.
6.Fockoperator(or,averageHamiltonian)consistsofone-electronoperatorsf(i)andCoulomboperatorsJj(i)
andexchangeoperatorsKj(i)
Na
electronsspinupandNb
electronsspindown.
Fockmatrixforanelectron1
withspinup:
Fa(1
)=fa(1
)+
j[Jja(1
)-Kja(1
)]+
j
Jjb(1
)
j=1
,Na
j=1
,Nb
Fockmatrixforanelectron1
withspindown:
Fb(1
)=fb(1
)+
j[Jjb(1
)-Kjb(1
)]+
j
Jja(1
) j=1
,Nb
j=1
,Na
f(1)
-(h2/2me)
12-
NZN/r1N
Jja(1)
dr2fja*(2)
e2/r12fja(2)Kja(1)q(1)
fja(1)
dr2fja*(2)e2/r12q(2)
Energy=
ja
fjja+
jb
fjjb+(1/2)
ia
ja(Jijaa
-Kijaa)+(1/2)
ia
jb(Jijbb
-Kijbb)+
ia
jb
Jijab
+VNNi=1,Na
j=1,Nbfjj
fjja
<fja|f|fja>Jij
Jijaa
<faj(2)|Jia(1)
|faj(2)>Kij
Kijaa
<faj(2)|Kia(1)
|faj(2)>Jij
Jijab
<fbj(2)|Jia(1)
|fbj(2)>
F(1)=f(1)+
j=1,n/2[2Jj(1)-Kj(1)]
Energy=2
j=1,n/2
fjj+
i=1,n/2
j=1,n/2(2Jij
-Kij)+VNNClosesubshellcase:(Na=Nb=n/2)1.Many-BodyWaveFunctionisapproximated bySlaterDeterminant2.Hartree-FockEquation F
fi=eifi
F
Fockoperator fi thei-thHartree-Fockorbital ei theenergyofthei-thHartree-FockorbitalHartree-FockMethod3.RoothaanMethod(introductionofBasisfunctions)fi
=
kcki
yk LCAO-MO
{yk}
isasetofatomicorbitals(orbasisfunctions)4.Hartree-Fock-Roothaan
equation
j(Fij-eiSij)cji=0
Fij
<
i|F|
j> Sij
<
i|
j>5.SolvetheHartree-Fock-Roothaanequation
self-consistently
<fa(1)fb(2)fc(3)...fd(n)|f(1)|fe(1)ff(2)fg(3)...fh(n)>=<fa(1)|f(1)|fe(1)><fb(2)fc(3)...fd(n)|ff(2)fg(3)...fh(n)>=<fa(1)|f(1)|fe(1)>
if
b=f,c=g,...,d=h;0,otherwise
<fa(1)fb(2)fc(3)...fd(n)|V12|fe(1)ff(2)fg(3)...fh(n)>=<fa(1)fb(2)|V12|fe(1)ff(2)><fc(3)...fd(n)|fg(3)...fh(n)>=<fa(1)fb(2)|V12|fe(1)ff(2)>
if
c=g,...,d=h;0,otherwiseTheCondon-SlaterRules
thelowestunoccupiedmolecularorbital
thehighestoccupiedmolecularorbital
Theenergyrequiredtoremoveanelectronfromaclosed-shellatomormoleculesiswellapproximatedbyminustheorbitalenergyeoftheAOorMOfromwhichtheelectronisremoved.HOMOLUMOKoopman’sTheorem#HF/6-31G(d)Routesection
waterenergyTitle01MoleculeSpecificationO-0.4640.1770.0(inCartesiancoordinatesH-0.4641.1370.0H0.441-0.1430.0Slater-typeorbitals(STO)
nlm=N
rn-1exp(-
r/a0)Ylm(
,
) x
theorbital
exponent*
isusedinsteadof
inthetextbookGaussiantypefunctionsgijk=Nxiyjzkexp(-ar2)(primitiveGaussianfunction)
p=
udup
gu(contractedGaussian-typefunction,CGTF)u={ijk} p={nlm}BasisSet
i=
pcip
pBasissetofGTFs
STO-3G,3-21G,4-31G,6-31G,6-31G*,6-31G**
complexity&accuracyMinimalbasisset:oneSTOforeachatomicorbital(AO)STO-3G:3GTFsforeachatomicorbital3-21G:3GTFsforeachinnershellAO2CGTFs(w/2&1GTFs)foreachvalenceAO6-31G:6GTFsforeachinnershellAO2CGTFs(w/3&1GTFs)foreachvalenceAO6-31G*:addsasetofdorbitalstoatomsin2nd&3rdrows6-31G**:addsasetofdorbitalstoatomsin2nd&3rdrows andasetofpfunctionstohydrogenPolarizationFunctionDiffuseBasisSets:Forexcitedstatesandinanionswhereelectronicdensityismorespreadout,additionalbasisfunctionsareneeded.Diffusefunctionsto6-31Gbasissetasfollows:
6-31G*-addsasetofdiffuses&porbitalstoatomsin1st&2ndrows(Li-Cl).6-31G**-addsasetofdiffusesandporbitalstoatomsin1st&2ndrows(Li-Cl)andasetofdiffusesfunctionstoH
Diffusefunctions+polarisationfunctions:6-31+G*,6-31++G*,6-31+G**and6-31++G**basissets.Double-zeta(DZ)basisset:
twoSTOforeachAO6-31Gforacarbonatom: (10s4p)
[3s2p] 1s 2s 2pi(i=x,y,z)
6GTFs 3GTFs 1GTF 3GTFs1GTF1CGTF1CGTF1CGTF1CGTF1CGTF (s) (s) (s)(p)(p)Minimalbasisset:
OneSTOforeachinner-shellandvalence-shellAOofeachatom
example:C2H2(2S1P/1S)C:1S,2S,2Px,2Py,2PzH:1Stotal12STOsasBasissetDouble-Zeta(DZ)basisset:twoSTOsforeachandvalence-shellAOofeachatomexample:C2H2(4S2P/2S)C:two1S,two2S,two2Px,two2Py,two2PzH:two1S(STOs)total24STOsasBasissetSplit-Valence(SV)basissetTwoSTOsforeachinner-shellandvalence-shellAOOneSTOforeachinner-shellAODouble-zetapluspolarizationset(DZ+P,orDZP)AdditionalSTOw/lquantumnumberlargerthanthelmaxofthevalence-shell(2Px,2Py,2Pz)toHFive3dAostoLi-Ne,Na-ArC2H5OSiH3:(6s4p1d/4s2p1d/2s1p)SiC,OHAssignment:Calculatethestructure,groundstateenergy,molecularorbitalenergies,andvibrationalmodesandfrequenciesofawatermoleculeusingHartree-Fockmethodwith3-21Gbasisset.(due30/10)1.L-Clickon(click
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024綠化工程承包合同范文
- 2024版防火卷簾門質(zhì)保期內(nèi)維修服務(wù)合同
- 2024酒店經(jīng)營權(quán)質(zhì)押貸款合同
- 2024年虛擬現(xiàn)實游戲開發(fā)與授權(quán)協(xié)議
- 2024生產(chǎn)車間設(shè)備銷售及安裝與環(huán)保服務(wù)合同3篇
- 2024物流設(shè)計、項目規(guī)劃合同
- 2024旋挖樁基礎(chǔ)施工質(zhì)量安全監(jiān)理合同范本3篇
- 2024版水電工程勞務(wù)合同
- 2024藝術(shù)品買賣合同中的真?zhèn)舞b別和交易方式
- 2024環(huán)保技術(shù)研發(fā)合同
- 法人代持免責(zé)任協(xié)議書(2篇)
- 閘站監(jiān)理實施細則
- 2024-2025學(xué)年湖北省恩施土家族苗族自治州數(shù)學(xué)六上期末檢測試題含解析
- 2024年中國寵物殯葬服務(wù)行業(yè)市場規(guī)模及發(fā)展前景研究報告(智研咨詢)
- 礦用電纜市場發(fā)展預(yù)測和趨勢分析
- 失蹤老人歸家協(xié)議書模板
- 2024年初三數(shù)學(xué)競賽考試試題
- 單位委托員工辦理水表業(yè)務(wù)委托書
- 2024年江蘇省蘇州市中考英語真題
- 02S501-2 雙層井蓋圖集標(biāo)準(zhǔn)
- 醫(yī)藥制造企業(yè)資本結(jié)構(gòu)優(yōu)化研究以貴州百靈為例
評論
0/150
提交評論