版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
RevenueManagement
andDynamicPricing:
PartIE.AndrewBoydChiefScientistandSeniorVP,ScienceandResearchPROSRevenueManagementaboyd@OutlineConceptExampleComponentsReal-TimeTransactionProcessingExtracting,Transforming,andLoadingDataForecastingOptimizationDecisionSupportNon-TraditionalApplicationsFurtherReadingandSpecialInterestGroupsRevenueManagement
andDynamicPricingRevenueManagementinConceptWhatisRevenueManagement?BeganintheairlineindustrySeatsonanaircraftdividedintodifferentproductsbasedondifferentrestrictions$1000Yclassproduct:canbepurchasedatanytime,norestrictions,fullyrefundable$200Qclassproduct:Requires3weekadvancedpurchase,Saturdaynightstay,penaltiesforchangingticketafterpurchaseQuestion:Howmuchinventorytomakeavailableineachclassateachpointinthesalescycle?WhatisRevenueManagement?RevenueManagement:ThescienceofmaximizingprofitsthroughmarketdemandforecastingandthemathematicaloptimizationofpricingandinventoryRelatednames:YieldManagement(original)RevenueOptimizationDemandManagementDemandChainManagementRudimentsStrategic/Tactical:MarketingMarketsegmentationProductdefinitionPricingframeworkDistributionstrategyOperational:RevenueManagementForecastingdemandbywillingness-to-payDynamicchangestopriceandavailableinventoryIndustryPopularityWasbornofabusinessproblemandspeakstoabusinessproblemAddressestherevenuesideoftheequation,notthecostside2–10%revenueimprovementscommonIndustryAccolades“Nowwecanbealotsmarter.Revenuemanagementisallofourprofit,andmore.” BillBrunger,VicePresidentContinentalAirlines“PROSproductshavebeenakeyfactorinSouthwest'sprofitperformance.”KeithTaylor,VicePresidentSouthwestAirlinesAnalystAccolades“RevenuePricingOptimizationrepresentthenextwaveofsoftwareascompaniesseektoleveragetheirERPandCRMsolutions.”–ScottPhillips,MerrillLynch“Oneofthemostexcitinginevitabilitiesaheadis‘yieldmanagement.’”–BobAustrian,BancofAmericaSecurities“RevenueOptimizationwillbecomeacompetitivestrategyinnearlyallindustries.”–AMRResearchAcademicAccolades“Anareaofparticularinteresttooperationsresearchexpertstoday,accordingtoTrick,isrevenuemanagement.”InformationWeek,July12,2002.Dr.TrickisaProfessoratCMU
andPresidentofINFORMS.AcademicAccoladesAswemoveintoanewmillennium,dynamicpricinghasbecometherule.“Yieldmanagement,”saysMr.Varian,“iswhereit’sat.”“ToHalVarianthePriceisAlwaysRight,”strategy+business,Q12000.Dr.VarianisDeanoftheSchoolofInformationManagementandSystemsatUCBerkeley,andwasrecentlynamedoneofthe25mostinfluentialpeopleineBusinessbyBusinessWeek(May14,2001)ApplicationAreasTraditionalAirlineHotelExtendedStayHotelCarRentalRailTourOperatorsCargoCruiseNon-TraditionalEnergyBroadcastHealthcareManufacturingApparelRestaurantsGolfMore…DynamicPricingThedistinctionbetweenrevenuemanagementanddynamicpricingisnotaltogetherclearArefareclassesdifferentproducts,ordifferentpricesforthesameproduct?RevenuemanagementtendstofocusoninventoryavailabilityratherthanpriceRealityisthatrevenuemanagementanddynamicpricingareinextricablylinkedTraditionalRevenueManagementNon-traditionalrevenuemanagementanddynamicpricingapplicationareashavenotevolvedtothepointofstandardindustrypracticesTraditionalrevenuemanagementhas,andwefocusprimarilyontraditionalapplicationsinthispresentationRevenueManagement
andDynamicPricingManagingAirlineInventoryAirlineInventoryAmid-sizecarriermighthave1000dailydepartureswithanaverageof200seatsperflightlegEWRSEALAXIAHATLORDAirlineInventory200seatsperflightleg200x1000=200,000seatspernetworkday365networkdaysmaintainedininventory365x200,000=73millionseatsininventoryatanygiventimeThemechanicsofmanagingfinalinventoryrepresentsachallengesimplyduetovolumeAirlineInventoryRevenuemanagementprovidesanalyticalcapabilitiesthatdriverevenuemaximizingdecisionsonwhatinventoryshouldbesoldandatwhatpriceForecastingtodeterminedemandanditswillingness-to-payEstablishinganoptimalmixoffareproductsFareProductMixShoulda$1200SEA-IAH-ATLMclassitinerarybeavailable?A$2000Yclassitinerary?EWRSEALAXIAHATLORDFareProductMixShoulda$600IAH-ATL-EWRBclassitinerarybeavailable?An$800Mclassitinerary?EWRSEALAXIAHATLORDFareProductMixOptimizationputsinplaceinventorycontrolsthatallowthehighestpayingcollectionofcustomerstobechosenWhenitmakeseconomicsense,fareclasseswillbeclosedsoastosaveroomforhigherpayingcustomersthatareyettocomeRevenueManagement
andDynamicPricingComponentsTheReal-TimeTransactionProcessorRealTimeTransactionProcessor(RESSystem)RequestsforInventoryTheRevenueManagementSystemRevenueManagementSystemForecastingOptimizationExtract,Transform,andLoadTransactionDataRealTimeTransactionProcessor(RESSystem)RequestsforInventoryAnalystsRevenueManagementSystemForecastingOptimizationExtract,Transform,andLoadTransactionDataRealTimeTransactionProcessor(RESSystem)RequestsforInventoryAnalystDecisionSupportTheRevenueManagementProcessRevenueManagementSystemForecastingOptimizationExtract,Transform,andLoadTransactionDataRealTimeTransactionProcessor(RESSystem)RequestsforInventoryAnalystDecisionSupportReal-TimeTransactionProcessorTheoptimizationparametersrequiredbythereal-timetransactionprocessorandsuppliedbytherevenuemanagementsystemconstitutetheinventory
control
mechanismReal-TimeTransactionProcessorDFWEWRYAvailMAvailBAvailQAvail11060200DFW-EWR:$1000Y$650M$450B$300QReal-TimeTransactionProcessorNestedleg/classavailabilityisthepredominantinventorycontrolmechanismintheairlineindustryDFWEWRYAvailMAvailBAvailQAvail11060200DFW-EWR:$1000Y$650M$450B$300QMClassBooking10959Real-TimeTransactionProcessorAfareclassmustbeopenonbothflightlegsifthefareclassistobeopenonthetwo-legitinerarySATDFWEWRYClassMClassBClassQClass501000YClassMClassBClassQClass11060200Extract,Transform,andLoadTransactionDataComplicationsVolumePerformancerequirementsNewproductsModifiedproductsPurchasemodificationsExtract,Transform,andLoadTransactionDataPHG01E08800005010710010710225300XXXXXXXX000000I011VXXXXXXXXSNAUSXXX0566490100000000XXXXXXXXXXXXIR00PSG01OA3210LAXIAHK0108241500010824222701082422000108250227HKOA00PSG01OA9312IAHMYRK0108242330010825003701082503300108250437HKOA00PHG01E08800005010710010711125400XXXXXXXX000000I011VXXXXXXXXSNAUSXXX0566490100000000XXXXXXXXXXXXIR00PSO01EV0409KPSG01OA1221LAXIAHK0108250600010825132501082513000108251725HKOA00PSG01OA0409IAHMYRK0108251455010825163601082518550108252036HKOA00PSO01EV4281YPSG01OA4281MYRIAHY0109020600010902071401090210000109021114HKOA00PSG01OA5932IAHLAXK0109020800010902094001090212000109021640HKOA00PHG01E08800005010710010712142000XXXXXXXX000000I011VXXXXXXXXSNAUSXXX0566490100000000XXXXXXXXXXXXIR00PSO01EV0409KPSG01OA1221LAXIAHK0108250600010825132501082513000108251725HKOA00PSG01OA0409IAHMYRK0108251455010825163601082518550108252036HKOA00PSO01EV4281YPSG01OA4281MYRIAHL0109030600010903071401090310000109031114HKOA00PSG01OA5932IAHLAXK0109020800010902094001090212000109021640HKOA00PHG01E08800005010710010716104500XXXXXXXX000000I011VXXXXXXXXSNAUSXXX0566490100000000XXXXXXXXXXXXIR00PSO01EV0409KPSG01OA1221LAXIAHK0108250600010825132501082513050108251725HKOA00PSG01OA0409IAHMYRK0108251455010825163601082518550108252036HKOA00PSO01EV2297LPSG01OA5932IAHLAXK0109030800010903094001090312000109031640HKOA00PSG01OA2297MYRIAHQ0109031140010903125501090315400109031655HKOA00PHG01E08800005010710010717111500XXXXXXXX000000I011VXXXXXXXXSNAUSXXX0566490100000000XXXXXXXXXXXXIR00PSO01EV0409KPSG01OA1221LAXIAHK0108250600010825132501082513000108251725HKOA00PSG01OA0409IAHMYRK0108251455010825163601082518550108252036HKOA00PSO01EV2297QPSG01OA0981IAHLAXQ0109031420010903160801090318200109032308HKOA00PSG01OA2297MYRIAHQ0109031140010903125501090315400109031655HKOA0012345DemandModelsandForecastingHowshoulddemandbemodeledandforecast?Smallnumbers/levelofdetailUnobserveddemandandunconstrainingElementsofdemand:purchases,cancellations,noshows,goshowsDemandmodel…theprocessbywhichconsumersmakeproductdecisionsDemandcorrelationanddistributionalassumptionsSeasonalityDemandModelsandForecastingHolidaysandrecurringeventsSpecialeventsPromotionsandmajorpriceinitiativesCompetitiveactionsOptimizationOptimizationissuesConvertibleinventoryMovableinventory/capacitymodificationsOverbooking/oversaleofphysicalinventoryUpgrade/upwardsubstitutableinventoryProductmix/competitionforresources/networkeffectsDecisionSupportRevenueManagement
andDynamicPricingNon-TraditionalApplicationsTwoNon-TraditionalApplicationsBroadcastBusinessprocessessurroundingthepurchaseandfulfillmentofadvertisingtimerequiremodificationoftraditionalrevenuemanagementmodelsHealthcareBusinessprocessessurroundingpatientadmissionsrequirere-conceptualizationoftherevenuemanagementprocessNewAreasContractsandlongtermcommitmentsofinventoryCustomerlevelrevenuemanagementIntegratingsalesandinventorymanagementAlliancesandcooperativeagreementsRevenueManagement
andDynamicPricingFurtherReadingandSpecialInterestGroupsFurtherReadingForanentrypointintotraditionalrevenuemanagementJefferyMcGillandGarrettvanRyzin,“RevenueManagement:ResearchOverviewandProspects,”TransportationScience,33(2),1999E.AndrewBoydandIoanaBilegan,“RevenueManagementande-Commerce,”underreview,2002SpecialInterestGroupsINFORMSRevenueManagementSection/Pages/MAIN.htmAnnualmeetingheldinJuneatColumbiaUniversityAGIFORSReservationsandYieldManagementStudyGroup
FollowlinktoStudyGroupsAnnualmeetingheldintheSpringRevenueManagement
andDynamicPricing:
PartIIE.AndrewBoydChiefScientistandSeniorVP,ScienceandResearchPROSRevenueManagementaboyd@OutlineSingleFlightLegLeg/ClassControlBidPriceControlNetwork(O&D)ControlControlMechanismsModelsRevenueManagement
andDynamicPricingSingleFlightLegLeg/ClassControlDFWEWRYAvailMAvailBAvailQAvail11060200DFW-EWR:$1000Y$650M$450B$300QAtafixedpointintime,whataretheoptimalnestedinventoryavailabilitylimits?AMathematicalModelGiven:FareforeachfareclassDistributionoftotaldemand-to-comebyclassDemandassumedindependentDetermine:OptimalnestedbookinglimitsNote:Cancellationstypicallytreatedthroughseparateoptimizationmodeltodetermineoverbooking
levelsAMathematicalModelWheninventoryispartitionedratherthannested,thesolutionissimplePartitioninventorysothattheexpectedmarginalrevenuegeneratedofthelastseatassignedtoeachfareclassisequal(forsufficientlyprofitablefareclasses)AMathematicalModelNestedinventorymakestheproblemsignificantlymoredifficultduetothefactthatdemandforonefareclassimpactstheavailabilityforotherfareclassesTheproblemisill-posedwithoutmakingexplicitassumptionsaboutarrivalorderEarlymodelsassumedlow-before-highfareclassarrivalsAMathematicalModelThereexistsasubstantialbodyofliteratureonmethodsforgeneratingoptimalnestedbookingclasslimitsMathematicsbasicallyconsistsofworkingthroughthedetailsofconditioningonthenumberofarrivalsinthelowervaluefareclassesAnheuristicknownasEMSRbthatmimicstheoptimalmethodshascometodominateinpracticeAnAlternativeModelThelow-before-higharrivalassumptionwasaddressedbyassumingdemandarrivesbyfareclassaccordingtoindependentstochasticprocesses(typicallynon-homogeneousPoisson)Sincemanypractitionersconceptualizedemandas
totaldemand-to-come,modelsbasedonstochasticprocessesfrequentlycauseconfusionALegDPFormulationWithPoissonarrivals,anaturalsolutionmethodologyisdynamicprogrammingStagespace:timepriortodepartureStatespacewithineachstage:numberofbookingsStatetransitionscorrespondtoeventssuchasarrivalsandcancellations…TT-1T-2T-310nn+1n+2n+3…SeatsRemainingTimetoDepartureCancellationNoEvent/RejectedArrivalAcceptedArrival………………ALegDPFormulationV(t,n):Expectedreturninstaget,staten
whenmakingoptimaldecisionsV(t,n)=maxu[p0(0+V(t-1,n)) Noevent
(1-p0)
c(0+V(t-1,n-1))+ Cancel
(1-p0)
(fi<u)
i(0+V(t-1,n))
Arrival/Reject
(1-p0)
(fiu)
i(fi+V(t-1,n+1))] Arrival/Acceptu(t,n):Optimalpricepointformaking accept/rejectdecisionswheneventin
staget,statenisabookingrequestALegDPFormulationDPhastheinterestingcharacteristicthatitcalculatesV(t,n)forall(t,n)pairsProvidesvaluableinformationfordecisionmakingPresentscomputationalchallengesThisnaturallysuggestsanalternativecontrolmechanismtonestedfareclassavailabilityBidpricecontrol882591639492847884768473200……8823916194908820915891878817200………nn+1n+2n+3SeatsRemainingTT-1T-2T-310TimetoDeparture………………8480V(t,n)=
ExpectedRevenue882591639492…nn+1n+2n+3SeatsRemainingT…8480V(t,n)=
ExpectedRevenueV(t,n+1)–V(t,n)=
MarginalExpectedRevenue345338330…T…352nn+1n+2n+3SeatsRemainingBidPriceControl:Withn+1seatsremaining,acceptonlyarrivalswithfaresinexcessof345345338330…T…352BidPriceControlLikenestedbookinglimits,thereexistsasubstantialliteratureondynamicprogrammingmethodsforbidpricecontrolWhilebidpricecontrolissimpleandmathematicallyoptimal(foritsmodelingassumptions),ithasnotyetbeenbroadlyacceptedintheairlineindustrySubstantialchangestotheunderlyingbusinessprocessesBidPriceControlSolutionsfromdynamicprogrammingcanalsobeconvertedtonestedbookinglimits,butthistechniquehasnotbeenbroadlyadoptedinpracticeBidpricecontrolcanbeimplementedwithroughlythesamenumberofcontrolparameters(bidprices)asnestedfareclassavailabilityRevenueManagement
andDynamicPricingNetwork(O&D)ControlControlMechanismsNetworkControlNetworkcontrolrecognizesthatpassengersflowonmultipleflightlegsAnissueofglobalversuslocaloptimizationProblemiscomplicatedformanyreasonsForecastsofmanysmallnumbersDataLegacybusinesspracticesInventoryControlMechanismTheinventorycontrolmechanismcanhaveasubstantialimpactonRevenueMarketinganddistributionChangestoRESsystemChangestocontractsanddistributionchannelsExample:
LimitationsofLeg/ClassControlSATDFWEWRSupply:1seatontheSAT-DFWleg1seatontheDFW-EWRlegDemand:1$300SAT-DFWYpassenger1$1200SAT-DFW-EWRYpassenger$1200Y$300YExample:
LimitationsofLeg/ClassControlOptimalleg/classavailabilityistoleaveoneseatavailableinYclassoneachlegSATDFWEWRYClassMClassBClassQClass1000YClassMClassBClassQClass1000Example:
LimitationsofLeg/ClassControlSATDFWEWR$1200Y$300YWithleg/classcontrol,thereisnowaytoclose
SAT-DFWYwhileleavingSAT-DFW-EWRYopenSupply:1seatontheSAT-DFWleg1seatontheDFW-EWRlegDemand:1$300SAT-DFWYpassenger1$1200SAT-DFW-EWRYpassengerLimitationsofLeg/ClassControlThelimitationsofleg/classavailabilityasacontrolmechanismlargelyeliminaterevenueimprovementsfromanythingmoresophisticatedthanleg/classoptimizationForthisreason,carriersthatadoptO&DcontrolalsoadoptanewinventorycontrolmechanismRequirestremendouseffortandexpensetoworkaroundthelegacyinventoryenvironmentAlternativeControlMechanismsWhiletherearemanypotentialinventorycontrolmechanismsotherthanleg/classcontrol,twohavecometopredominateO&DrevenuemanagementapplicationsVirtualnestingBidpriceNotethattheconceptofitinerary/fareclass(ODIF)inventorylevelcontrolisimpracticalVirtualNestingAprimalcontrolmechanismsimilarinflavortoleg/classcontrolAsmallsetofvirtualinventorybucketsaredeterminedforeachlegNestedinventorylevelsareestablishedforeachbucketEachleginanODIFismappedtoaleginventorybucketandanODIFisavailableforsaleifinventoryisavailableineachlegbucketVirtualNestingSAT-DFW-EWRYmapstovirtualbucket3onlegSAT-DFWandvirtualbucket1onlegDFW-EWRTotalavailabilityof10forSAT-DFW-EWRYSATDFWEWRBucket1Bucket2Bucket3Bucket410060100Bucket1Bucket2Bucket3Bucket440000VirtualNestingSAT-DFWYmapstovirtualbucket4onlegSAT-DFWSAT-DFWYisclosedSATDFWEWRBucket1Bucket2Bucket3Bucket410060100Bucket1Bucket2Bucket3Bucket440000BidPriceControlAdualcontrolmechanismAbidpriceisestablishedforeachflightlegAnODIFisopenforsaleifthefareexceedsthesumofthebidpricesonthelegsthatareusedBidPriceControlSATDFWEWR$1200YBidPrice=$400BidPrice=$600SAT-DFW-EWRYisopenforsalebecause
$1200$400+$600
BidPriceControlSATDFWEWRBidPrice=$400BidPrice=$600$300YSAT-DFWYisclosedforsalebecause
$300<$400BidPriceControlSATDFWEWRIntermediatecontrolbetweenoptimizationpointsisachievedbyhavingadifferentbidpriceforeach
seatsoldininventory654321$664$647$632$619$610$600SeatBidPrice654321$434$425$417$410$405$400SeatBidPriceBidPriceControlSATDFWEWRAfteraseatissoldthebidpriceincreases,reflectingthereducedinventoryavailability654321$664$647$632$619$610$600SeatBidPrice654321$434$425$417$410$405$400SeatBidPriceVirtualNestingAdvantagesVerygoodrevenueperformanceComputationallytractableRelativelysmallnumberofcontrolparametersComprehensibletousersAcceptedindustrypracticeDisadvantagesNotdirectlyapplicabletomulti-dimensionalresourcedomainsProperoperationrequiresconstantremappingofODIFstovirtualbucketsBidPriceControlAdvantagesExcellentrevenueperformanceComputationallytractableComprehensibletousersBroaderusethanrevenuemanagementapplicationsPlacesamonetaryvalueonunitinventoryDisadvantagesGrowinguseracceptance,buthasnotreached
thesamelevelasprimalmethodsRevenueManagement
andDynamicPricingNetwork(O&D)ControlModelsAModelThedemandallocationmodel(alsoknownasthedemand-to-comemodel)hasbeenproposedforuseinrevenuemanagementapplications,butistypicallynotemployedForallofitslimitations,thedemandallocationmodelbringstolightmanyoftheimportantissuesinrevenuemanagementDemandAllocationModelMax
iIrixis.t.
iI(e)xice eE (e)
xidi iI (
i)
xi0
iI
I=setofODIFsE=setofflightlegsce=capacityofflightedi=demandforODIFiri=ODIFirevenueI(e)=ODIFsusingflightexi=demandallocatedtoODIFiLeg/ClassControlMax
iIrixis.t.
iI(e)xice eE (e)
xidi iI (
i)
xi0
iI
Thevariablesxicanberolleduptogenerateleg/classavailabilityVirtualNestingMax
iIrixis.t.
iI(e)xice eE (e)
xidi iI (
i)
xi0
iI
OnceODIFshavebeenassignedtolegbuckets,thevariablesxicanberolleduptogenerateleg/classavailabilityBidPriceControlMax
iIrixis.t.
iI(e)xice eE (e)
xidi iI (
i)
xi0
iI
ThedualvariableseassociatedwiththecapacityconstraintscanbeusedasbidpricesNetworkAlgorithms:
Leg/ClassControlNetworkalgorithmsforgeneratingnestedleg/classavailabilityarenottypicallyusedLimitationsofthecontrolmechanismandfarestructureeliminatemuchofthevalueNetworkAlgorithms:
VirtualNestingControlOptimizationconsistsofdeterminingtheODIFtoleg/bucketmapping,andthencalculatingnestedleg/bucketinventorylevelsBestmappingsprorateODIFfarestolegs,andthengroupsimilarproratedfaresintothesamebucketThebestprorationmethodsdependondemandforecastsandrealizedbookings,andchangedynamicallythroughoutthebookingcycleWithODIFsmappedtobuckets,nestedbucketinventorylevelsarecalculatedusingthenestedleg/bucketalgorithmofchoiceNetworkAlgorithms:
BidPriceControlBidpricesarenormallygenerateddirectlyorindirectlyfromthedualsolutionofanetworkoptimizationmodelResourceAllocationModelObservationsA200legnetworkmayhave10,000activeODIFs,leadingtoanetworkoptimizationproblemwith10,000columnsand10,200rowsWith20,000passengers,theaveragenumberofpassengersperODIFis2Typically,20%oftheODIFswillcarry80%ofthetraffic,withalargenumberofODIFscarryingontheorderof.01orfewerpassengersper
networkdayResourceAllocationModelMax
iIrixis.t.
iI(e)xice eE (e)
xidi iI (
i)
xi0
iI
ManysmallnumbersLevelofDetailProblemThelevelofdetailproblemremainsapracticalconsiderationwhensettingupanyrevenuemanag
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘇科版八年級物理下冊《第八章力與運動》單元檢測卷及答案
- 人教版七年級數(shù)學下冊全冊導學案
- 《誡子書》復習課
- 中小學機房作品管理系統(tǒng)的開發(fā)與應用研究
- 高一化學二第二章第二節(jié)化學能與電能練習
- 2024屆安徽省巢湖市某中學高考仿真模擬化學試卷含解析
- 2024高中地理第3章地理信息技術應用第4節(jié)數(shù)字地球精練含解析湘教版必修3
- 2024高中物理第二章交變電流第六節(jié)變壓器達標作業(yè)含解析粵教版選修3-2
- 2024高中語文第一單元以意逆志知人論世湘夫人訓練含解析新人教版選修中國古代詩歌散文欣賞
- 綿陽市高中2022級(2025屆)高三第二次診斷性考試(二診)歷史試卷(含答案)
- 《視頻壓縮基礎》課件
- 2025南方財經全媒體集團校園招聘63人高頻重點提升(共500題)附帶答案詳解
- 《A機場公司人力資源管理工作實踐調研報告》2600字(論文)
- 社工人才培訓計劃實施方案
- 四年級數(shù)學(上)計算題專項練習及答案
- 6、水平四+田徑18課時大單元計劃-《雙手頭上前擲實心球》
- 軍事理論(2024年版)學習通超星期末考試答案章節(jié)答案2024年
- 青島版科學四年級下冊課程綱要
- 部編人教版六年級下冊語文1-6單元作文課件
- NB/T 11434.5-2023煤礦膏體充填第5部分:膠凝材料技術要求
評論
0/150
提交評論