外文翻譯-飛機(jī)燃油系統(tǒng)模糊FMEA和FMECA分析_第1頁(yè)
外文翻譯-飛機(jī)燃油系統(tǒng)模糊FMEA和FMECA分析_第2頁(yè)
外文翻譯-飛機(jī)燃油系統(tǒng)模糊FMEA和FMECA分析_第3頁(yè)
外文翻譯-飛機(jī)燃油系統(tǒng)模糊FMEA和FMECA分析_第4頁(yè)
外文翻譯-飛機(jī)燃油系統(tǒng)模糊FMEA和FMECA分析_第5頁(yè)
已閱讀5頁(yè),還剩5頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

文獻(xiàn)翻譯中文題目飛機(jī)燃油系統(tǒng)模糊FMEA和FMECA分析英文題目AircraftFuelSystemFuzzyFMEAandFMECAAnalysis

AircraftFuelSystemFuzzyFMEAandFMECAAnalysisAbstractThroughquantitativeanalysis,Thepaperusecomputertechnologyandmathematicalmethods,combinedwithFMEAandFMECA,thepaperorganizedthefailureofanaircraftfuelsystempartsinrecentyears,wesetupfaultmodelsystemtoanalysisFuelsystemofCertaintypeaircraft,expandingthewayofmaintenanceandsupport.1.IntroductionAircraftsystemisamulti-componentsystem,andeachpartrunindependently,differentpartsofthesystemhasdifferentaffect,soitisnecessarytodistinguishpriorityofservice.Howtoefficientlyimplementmaintenanceandsupport,toensurethecompletevarioustaskssuccessful,itisabrandnewtopicneedtobeconsideredforalllevelsmaintenanceengineeringandtechnicalstaff.Withthegrowthandenhancetroubleshootingcapabilities,maintenancestaffcannotlimitedonlybytheavailabledataandresourcestodiagnosefaultycomponents,andweshouldfocusonanti-failuredetectionmonitoring,fromthecurrentprioritiesanddivisionoflaborpointofview,basicmaintenancestafffocusonthediscoveryandanalysisoffaults,andisolatethefaultyprocessandmethods,maintenancetechnicalmanagementattenttofailuretime,specificcontentguidance,managementofrepairprocess,equipmentofficefocusonmaintenancemodeandresourcesifhasareasonableallocation,industrialproductionsectorisstudyofmacrofailure,failuremodesandreliabilitybasedonbasiclevelmaintenanceexperience.2.FMEAbasedonfuzzytheoryThesystemisbasedonthecomponent,therefore,systemfailureiscausedmainlybyacomponentfailure,studyandanalyzethefaultoftheindividualcomponentsanditsfailuremodesisbasicresearchofsystemfailure,usingFMEAriskanalysismethods,whichcanidentifysystemfailuresmodeandeffect,reducethequalityrisk,eliminatedefects,butwhenanalysisasystem,therearemanycomplexanduncertainfactorsinevitably,itisdifficulttoquantitativelydescribetheprimaryandsecondaryrelationshipbetweendifferentfailuremodesofsystemcomponents,usingfuzzymathematicalmethodtodealwithuncertaininformation,quantitativeanalysisofthedegreeofimpactofvariousriskfactorsonthesystem,accordingtothefuzzysortofriskpriorityvalueofeachriskfactor,whichcancontrolfactorsofkeycomponentsfuelsystemstoreducetheuseofrisk.2.1TraditionalFMEAmethodExplanationofstatisticaldataasfollowing:Putspecificchecksandaircraftchangeseasonintoaclass,mechanicaldayandpreparatorymaintenancepreparedatestatisticscombinedtogether,duetothecurrentfilledcarddoesnotregulate,wesortoutmanysimilarfailuresdataasoneclass,suchascombinedaircraftbodyandairfoiltankreliefvalve,combinedfueloildischargeswitchandelectricswitchleakageintoonecategory,combinedfuellevelcontrolandsignalfailureofpressurecontrollerwhilepluspressureintoonecategory,relatedissuescombinedstatistics.Failuremodeoftheaircraftfuelsystemsandimpactanalysisshownintable1.ThetraditionalmethoduseRPNtosortforthequalityrisk,throughtheseverityofthefailuremode,theprobabilityanddetectiontoassessmentrisk,whichrangesfrom[1,10],withquantitativeindicatorstodeterminehighriskoffailuremodesandkeyfactors.Where:RPN=S*O*DObviously,threefactorsgivendifferentweightswillproducedifferentriskprioritynumber,becausefactorsitselfhasambiguityanduncertainty,thetraditionalexpertevaluationmethodtodeterminetheweightofeachfactorscannotreflecttheexactrealimpactextentofevaluationfactorsobjectively,soweconsiderobfuscatetothevalueofthreefactors.Therefore,weselectfourdifferentprofessionalandtechnicalexpertsinvolvedinthefuelsystemofFMEAassessment,first,givendifferentweightsbasedonexperienceandknowledgeoftheexperts,relativeweightsare:0.3(E1),2.5(E2),3.5(E3),0.1(E1).AccordingtoTable1,thefailuremodeofthefuelsystemhavefivekinds,accordingtothefrequencyoffaultoccurrence,thedegreeofseverityandthedetectiontooptimize5failuremode,accordingtothelevelofblurringlistedinTable1andtheaboveequation,wecanobtainthefrequencyoftheeachfailuremode,severityandtheOverallfuzzyevaluationinformationdegreeofdetecteddifficultyandoverallevaluationdegreeoftheimportanceinformation,accordingtotheformulawecalculatetheriskoffailureprioritylevel,resultsisinthefollowingtable2:3.FMECAmethodFMECAisfailuremodeseffectsandcriticalityanalysis,foranalysisfailure,causesandeffectsofproduct,sothatwecanmodifiedthevariousstagesofproductionandthefeasibilitystudy,provideameaningfulreferencefornewproductdevelopmentorevaluation.Usingthismethod,weneedtodeterminetheprobabilityandseverityratingcategoriesoffailure.3.1DetermineSeverityTypeandProbabilityLevelofFailureSeveritycategoryisclassifyforthemostseriouspotentialconsequencescausedbythefailure,firstly,byseverityitisclassifyintofourcategories:Whenthefailuremodecannotbeexplicitlyexpressedinthefourcategories,accordingtotheextentofthelossthatwewillrepresentsanapproximationoftheclassification,accordingtotheseverityofthefailure,thesystemcomponentscanbedividedintofourcategories.ClassⅠ(disaster):Maycausedeathorsystemdamageall;ClassⅡ(fatal):seriousinjury,equipmentdamageortasktermination;ClassⅢ(critical):mildinjury,equipmentdamageorperformancedegradationClassⅣ(mild):doesnotcauseinjuryordamagetotheequipment,butifleftunattended,lock-outs,whichmayleadtoequipmentfailure.Itisrelatedtonotonlythedamagelevelbutalsotheprobabilityofthefailuremodeoccurrenceinusingifthesystemisdamaged,theprobabilityoffailureisdividedintofivegrades:LevelA(frequent):0.2<P≤1.0;LevelB(sometimes):0.1<P≤0.2LevelC(occasional):0.01<P≤0.1;LevelD(rare):0.001<P≤0.01LevelE(basicallydoesnothappen):0<P≤0.001WeuseFMECAanalysistheimportanceofeachfailuremodeandtheprobabilityofoccurrencetodeterminethefaultlawofthevariouscomponentsofthefuelsystem,failuremode,providesusefulinformationformaintenanceplansandtroubleshooting,takepreventivemeasures.3.2HazardAnalysisHazardanalysisisperformedbythecombinedeffectsoftheoccurrenceprobabilityandharm'sdegreeofsystemfailuremode,itisclassifiedintoquantitativeandqualitativematrixmethod,usingtheformermethodwhenthereisincompletedata,whenthereissufficientdatatousethelatter,thepapercollectedfailuredatafrom2009to2011,thedataismorefull,thereforeweusequalitativeanalysis.Judgmentmethod:themethodofdangersis:thedistributionpointoffailuremodemarkeddiagonal(dashedlineOPinFig),thedistancefromtheintersectionoftheverticalanddiagonaltotheoriginasameasureofthedangersoffailuremodes;thelongerthedistance,theharmisgreater.Asthequalitativeanalysis,werequirethepointinthesameboxmarkedhavesamedangers(suchas(2)and(6)havethesamedangers,(1),(3)and(5)).fromthedangersofthematrix,(2)hasmaximumharmtothesystem,thatisleakingfuelfailureofelectricswitch,itisagingsealslocatedinthelandinggearcompartment,itismechanicalengineeringfailures;(6)fuellevelcontrollerfailure,itistheoillevelcontrollerfault,itismechanicaldamage,(5)thegasturbinestarterisaⅡfaultseveritylevel,butbecauseofitslevelofprobabilityfailureissmall,itisEsonotparticularlyhighharmfulness.(2),(6)and(1)probabilityfailureislargerelatively.(3)Quantityindicatorfortheadhocisinternalbridgefailures,itisprofessionalfailure,probabilityratingisD.Thedangerssortorderoffuelsystemfaultyis:2>6>5>3>1>4.4.ConclusionsThispaperanalyzedfuzzyFMEAandFMECAofacertaintypeofaircraftfuelsystemfaultconditions,wegetpriorityhazardousSortofsixkindsoffailuremodeanddangerssortinthefuelsystem,weputitastheonlyfaultinthesystem,inpractical,ifthefaultisundetectable,weshouldbefurtheranalyzedtodeterminetheimpactofotherfailuresrelated,designspecialcontrolmeasures,researchdepartmentscanupdateFMEAreporttimely,provideempiricaldataforanewroundofequipmentdevelopment,alongthefaultwecanpredicttheremaininglifeofcomponentsaccurately,soastopromotetherealizationoftheequipmentprecisionsupportgradually.References:[1]HeGuofang,XuHaibaoreliabilityofdatacollectionandof[M]Beijing:NationalDefenceIndustryPress,1995[2]HoMing-jianeditoraviationenginereliability,maintainabilityfaultdiagnosis[M]Beijing:AviationIndustryPress,1998[3]ZhangHaibo,JIAYa-zhou,ZhouGuangwen,PeiYonghong,ChenYunCNCsystemfailuremodes,effectsandcriticalityanalysis[J].MechanicalEngineering,2004(6)[4]WangShaopingreliabilityengineering[M]Beijing:BeijingAerospaceUniversityPress,2000[5]JIANGXingWei,SongZhengJi,WangXiaochenreliabilityengineeringtechnology[M]Harbin:HarbinInstituteofTechnologyPress,2005[6]GJB/Z1391-2006FailureModes,EffectsandCriticalityAnalysisGuide[S]Beijing:ChinaStandardPress,2006.[7]LiTianmei,QiuJing,LiuKuan-chuntestfailureratebasedverificationtestsfaultsampleallocationscheme[J]AviationJournal,2009,30(9):1661-1665.[8][MIL-HDBK-.470ADesigningandDevelopingMaintainableProductandSystems[S]USA,1997.[9]GJB/Z1391-.2006FailureModes,EffectsandCriticalityAnalysisGuide[S]GeneralArmamentDepartmentofMilitaryStandardPublishing,2006.[10]NationalMilitaryStandardfailuremodes,effectsandcriticalityanalysisprograms,faulttreeanalysisImplementationGuide[S].NationalDefenseMinistrymilitarystandardpublishedin1992.[11]associatedwithacomplexsystemFMEAFuzzyContext[J].ZhejiangUniversity,2013(5).[12]Jun-FengZhou,XuLeping,bambooKenfordsoon.Failuremodeandeffectanalysismethodintheship'smainpropulsionsystem[J].BoatOceanEngineering200635684-87.[13]DengHaifei,LvYanmeiandsoon..UAVparachuterecoverysystemfailuremodes,effectsandcriticalityanalysis[J]EquipmentEnvironmentalEngineering2012.06:90飛機(jī)燃油系統(tǒng)模糊FMEA和FMECA分析摘要本文運(yùn)用計(jì)算機(jī)技術(shù)和數(shù)學(xué)方法,結(jié)合FMEA和FMECA,通過(guò)定量分析,組織了近年來(lái)飛機(jī)燃油系統(tǒng)零部件的故障,建立故障模型系統(tǒng)分析某型號(hào)飛機(jī)燃油系統(tǒng),擴(kuò)大了維護(hù)和支持的方式。1.介紹飛機(jī)系統(tǒng)是一個(gè)多部件系統(tǒng),每個(gè)部件獨(dú)立運(yùn)行,系統(tǒng)的不同部分有不同的影響,因此有必要區(qū)分服務(wù)的優(yōu)先級(jí)。如何高效地實(shí)施維護(hù)與支持,確保各項(xiàng)任務(wù)順利完成,是各級(jí)維修工程技術(shù)人員需要考慮的嶄新課題。隨著增長(zhǎng)和增強(qiáng)故障排除能力,維修人員不能僅限于通過(guò)可用的數(shù)據(jù)和資源來(lái)診斷故障組件,而應(yīng)重點(diǎn)關(guān)注抗故障檢測(cè)監(jiān)控,從目前的優(yōu)先級(jí)和分工的角度來(lái)看,基本維護(hù)工作人員注重對(duì)故障的發(fā)現(xiàn)和分析,將故障過(guò)程和方法,維修技術(shù)管理意圖與故障時(shí)間隔離,具體內(nèi)容指導(dǎo),維修過(guò)程管理,設(shè)備辦公室關(guān)注維護(hù)模式和資源生產(chǎn)部門是基于基層維護(hù)經(jīng)驗(yàn)研究宏觀失敗,失效模式和可靠性的。2.基于模糊理論的FMEA系統(tǒng)基于組件,因此,系統(tǒng)故障主要是由組件故障引起,研究和分析單個(gè)組件的故障,其故障模式是系統(tǒng)故障的基礎(chǔ)研究,采用FMEA風(fēng)險(xiǎn)分析方法,可以識(shí)別系統(tǒng)故障模式和影響,降低質(zhì)量風(fēng)險(xiǎn),消除缺陷,但是在分析系統(tǒng)時(shí),不可避免地存在許多復(fù)雜和不確定的因素,難以定量描述系統(tǒng)組件不同失效模式之間的主次關(guān)系,采用模糊數(shù)學(xué)處理不確定信息的方法,定量分析各種風(fēng)險(xiǎn)因素對(duì)系統(tǒng)的影響程度,根據(jù)各風(fēng)險(xiǎn)因素的風(fēng)險(xiǎn)優(yōu)先值的模糊排序,即可控制關(guān)鍵部件燃料系統(tǒng)因素的減少使用風(fēng)險(xiǎn)。2.1傳統(tǒng)的FMEA方法統(tǒng)計(jì)數(shù)據(jù)說(shuō)明如下:將具體檢查和飛機(jī)變更季節(jié)放入班級(jí),將機(jī)械日和預(yù)備維修準(zhǔn)備日期統(tǒng)計(jì)結(jié)合在一起,由于當(dāng)前充值卡沒(méi)有規(guī)定,我們將許多類似的故障數(shù)據(jù)歸類為一類,如組合式飛機(jī)機(jī)體和翼型油箱溢流閥,組合式燃油排放開(kāi)關(guān)和電氣開(kāi)關(guān)泄漏為一類,綜合燃油液位控制和壓力控制器信號(hào)故障同時(shí)加壓成一類,相關(guān)問(wèn)題綜合統(tǒng)計(jì)。傳統(tǒng)的方法使用RPN對(duì)質(zhì)量風(fēng)險(xiǎn)進(jìn)行排序,通過(guò)故障模式的嚴(yán)重程度,概率和檢測(cè)到評(píng)估風(fēng)險(xiǎn)的范圍從[1,10],用量化指標(biāo)來(lái)確定高風(fēng)險(xiǎn)的失效模式和關(guān)鍵因素。其中:RPN=S*O*d顯然,不同權(quán)重的三個(gè)因素會(huì)產(chǎn)生不同的風(fēng)險(xiǎn)優(yōu)先級(jí)數(shù),由于因素本身存在模糊性和不確定性,傳統(tǒng)的確定各因素權(quán)重的專家評(píng)估方法不能客觀地反映評(píng)估因素的確切影響程度,所以我們考慮混淆到三個(gè)因素的價(jià)值。因此,我們選擇了四個(gè)不同的專家和技術(shù)專家參與FMEA評(píng)估的燃料系統(tǒng),首先根據(jù)專家的經(jīng)驗(yàn)和知識(shí)給予不同的權(quán)重,相對(duì)權(quán)重為:0。3(E1),2.5(E2),3.5(E3),0.1(E1)。根據(jù)表1,燃料系統(tǒng)的故障模式有五種,根據(jù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論