




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
黑龍江省大慶市一中學(xué)2024屆數(shù)學(xué)九上期末調(diào)研試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.如圖直角三角板∠ABO=30°,直角項點O位于坐標(biāo)原點,斜邊AB垂直于x軸,頂點A在函數(shù)的y1=圖象上,頂點B在函數(shù)y2=的圖象上,則=()A. B. C. D.2.如圖等邊△ABC的邊長為4cm,點P,點Q同時從點A出發(fā)點,Q沿AC以1cm/s的速度向點C運動,點P沿A﹣B﹣C以2cm/s的速度也向點C運動,直到到達點C時停止運動,若△APQ的面積為S(cm2),點Q的運動時間為t(s),則下列最能反映S與t之間大致圖象是()A. B.C. D.3.表給出了二次函數(shù)y=ax2+bx+c(a≠0)的自變量x與函數(shù)值y的部分對應(yīng)值:那么方程ax2+bx+c=0的一個根的近似值可能是()x…11.11.21.31.4…y…﹣1﹣0.490.040.591.16…A.1.08 B.1.18 C.1.28 D.1.384.若關(guān)于的方程有兩個不相等的實數(shù)根,則的取值范圍是()A. B. C. D.5.兩個相鄰自然數(shù)的積是1.則這兩個數(shù)中,較大的數(shù)是()A.11 B.12 C.13 D.146.如圖,已知ΔABC中,AE交BC于點D,∠C=∠E,AD:DE=2:3,AE=10,BD=5,則DC的長是()A. B. C. D.7.若∽,相似比為,則與的周長比為()A. B. C. D.8.小明同學(xué)以正六邊形三個不相鄰的頂點為圓心,邊長為半徑,向外作三段圓弧,設(shè)計了如圖所示的圖案,已知正六邊形的邊長為1,則該圖案外圍輪廓的周長為()A. B. C. D.9.如圖,在⊙O中,弦AC∥半徑OB,∠BOC=50°,則∠OAB的度數(shù)為()A.25° B.20° C.15° D.30°10.二次函數(shù)的部分圖象如圖所示,圖象過點,對稱軸為.下列說法:①;②;③4;④若,是拋物線上兩點,則,錯誤的是()A.① B.② C.③ D.④11.如圖,是正方形的外接圓,點是上的一點,則的度數(shù)是()A. B.C. D.12.如圖,四邊形ABCD內(nèi)接于⊙O,已知∠A=80°,則∠C的度數(shù)是()A.40° B.80° C.100° D.120°二、填空題(每題4分,共24分)13.已知四個點的坐標(biāo)分別為A(-4,2),B(-3,1),C(-1,1),D(-2,2),若拋物線y=ax2與四邊形ABCD的邊沒有交點,則a的取值范圍為____________.14.“永定樓”,作為門頭溝區(qū)的地標(biāo)性建筑,因其坐落在永定河畔而得名.為測得其高度,低空無人機在A處,測得樓頂端B的仰角為30°,樓底端C的俯角為45°,此時低空無人機到地面的垂直距離AE為23米,那么永定樓的高度BC是______米(結(jié)果保留根號).15.如圖,直線交x軸于點A,交y軸于點B,點P是x軸上一動點,以點P為圓心,以1個單位長度為半徑作⊙P,當(dāng)⊙P與直線AB相切時,點P的橫坐標(biāo)是_____16.一元二次方程的根是_____.17.如圖,利用我們現(xiàn)在已經(jīng)學(xué)過的圓和銳角三角函數(shù)的知識可知,半徑r和圓心角θ及其所對的弦長l之間的關(guān)系為,從而,綜合上述材料當(dāng)時,______.18.若二次函數(shù)的圖象開口向下,則實數(shù)a的值可能是___________(寫出一個即可)三、解答題(共78分)19.(8分)如圖,已知的三個頂點的坐標(biāo)分別為、、,P(a,b)是△ABC的邊AC上一點:(1)將繞原點逆時針旋轉(zhuǎn)90°得到,請在網(wǎng)格中畫出,旋轉(zhuǎn)過程中點A所走的路徑長為.(2)將△ABC沿一定的方向平移后,點P的對應(yīng)點為P2(a+6,b+2),請在網(wǎng)格畫出上述平移后的△A2B2C2,并寫出點A2、的坐標(biāo):A2().(3)若以點O為位似中心,作△A3B3C3與△ABC成2:1的位似,則與點P對應(yīng)的點P3位似坐標(biāo)為(直接寫出結(jié)果).20.(8分)如圖,已知是的外接圓,是的直徑,為外一點,平分,且.(1)求證:;(2)求證:與相切.21.(8分)前蘇聯(lián)教育家蘇霍姆林斯曾說過:“讓學(xué)生變聰明的方法,不是補課,不是増加作業(yè)量,而是閱讀,閱讀,再閱讀”.課外閱讀也可以促進我們養(yǎng)成終身學(xué)習(xí)的習(xí)慣.云南某學(xué)校組織學(xué)生利用課余時間多讀書,讀好書,一段時間后,學(xué)校對部分學(xué)生每周閱讀時間進行調(diào)查,并繪制了不完整的頻數(shù)分布表和頻數(shù)分布直方圖,如圖所示:時間(時)頻數(shù)百分比1010%25mn30%a20%1515%根據(jù)圖表提供的信息,回答下列問題:(1)填空:______,________;(2)請補全頻數(shù)分布直方圖;(3)該校共有3600名學(xué)生,估計學(xué)生每周閱讀時間x(時)在范圍內(nèi)的人數(shù)有多少人?22.(10分)如圖,在中,,,以為原點所在直線為軸建立平面直角坐標(biāo)系,的頂點在反比例函數(shù)的圖象上.(1)求反比例函數(shù)的解析式:(2)將向右平移個單位長度,對應(yīng)得到,當(dāng)函數(shù)的圖象經(jīng)過一邊的中點時,求的值.23.(10分)定義:在平面直角坐標(biāo)系中,拋物線()與直線交于點、(點在點右邊),將拋物線沿直線翻折,翻折前后兩拋物線的頂點分別為點、,我們將兩拋物線之間形成的封閉圖形稱為驚喜線,四邊形稱為驚喜四邊形,對角線與之比稱為驚喜度(Degreeofsurprise),記作.(1)如圖(1)拋物線沿直線翻折后得到驚喜線.則點坐標(biāo),點坐標(biāo),驚喜四邊形屬于所學(xué)過的哪種特殊平行四邊形?,為.(2)如果拋物線()沿直線翻折后所得驚喜線的驚喜度為1,求的值.(3)如果拋物線沿直線翻折后所得的驚喜線在時,其最高點的縱坐標(biāo)為16,求的值并直接寫出驚喜度.24.(10分)如圖,AB和DE直立在地面上的兩根立柱,已知AB=5m,某一時刻AB在太陽光下的影子長BC=3m.(1)在圖中畫出此時DE在太陽光下的影子EF;(2)在測量AB影子長時,同時測量出EF=6m,計算DE的長.25.(12分)一次函數(shù)分別與軸、軸交于點、.頂點為的拋物線經(jīng)過點.(1)求拋物線的解析式;(2)點為第一象限拋物線上一動點.設(shè)點的橫坐標(biāo)為,的面積為.當(dāng)為何值時,的值最大,并求的最大值;(3)在(2)的結(jié)論下,若點在軸上,為直角三角形,請直接寫出點的坐標(biāo).26.某校綜合實踐小組要對一幢建筑物的高度進行測量.如圖,該小組在一斜坡坡腳處測得該建筑物頂端的仰角為,沿斜坡向上走到達處,(即)測得該建筑物頂端的仰角為.已知斜坡的坡度,請你計算建筑物的高度(即的長,結(jié)果保留根號).
參考答案一、選擇題(每題4分,共48分)1、D【分析】設(shè)AC=a,則OA=2a,OC=a,根據(jù)直角三角形30°角的性質(zhì)和勾股定理分別計算點A和B的坐標(biāo),寫出A和B兩點的坐標(biāo),代入解析式求出k1和k2的值,即可求的值.【題目詳解】設(shè)AB與x軸交點為點C,Rt△AOB中,∠B=30°,∠AOB=90°,∴∠OAC=60°,∵AB⊥OC,∴∠ACO=90°,∴∠AOC=30°,設(shè)AC=a,則OA=2a,OC=a,∴A(a,a),∵A在函數(shù)y1=的圖象上,∴k1=a×a=a2,Rt△BOC中,OB=2OC=2a,∴BC==3a,∴B(a,﹣3a),∵B在函數(shù)y2=的圖象上,∴k2=﹣3a×a=﹣3a2,∴=,故選:D.【題目點撥】此題考查反比例函數(shù)的性質(zhì),勾股定理,直角三角形的性質(zhì),設(shè)AC=a是解題的關(guān)鍵,由此表示出其他的線段求出k1與k2的值,才能求出結(jié)果.2、C【分析】根據(jù)等邊三角形的性質(zhì)可得,然后根據(jù)點P的位置分類討論,分別求出S與t的函數(shù)關(guān)系式即可得出結(jié)論.【題目詳解】解:∵△ABC為等邊三角形∴∠A=∠C=60°,AB=BC=AC=4當(dāng)點P在AB邊運動時,根據(jù)題意可得AP=2t,AQ=t∴△APQ為直角三角形S=AQ×PQ=AQ×(AP·sinA)=×t×2t×=t2,圖象為開口向上的拋物線,當(dāng)點P在BC邊運動時,如下圖,根據(jù)題意可得PC=2×4-2t=8-2t,AQ=tS=×AQ×PH=×AQ×(PC·sinC)=×t×(8﹣2t)×=t(4﹣t)=-t2+,圖象為開口向下的拋物線;故選:C.【題目點撥】此題考查的是根據(jù)動點判定函數(shù)的圖象,掌握三角形面積的求法、二次函數(shù)的圖象及性質(zhì)和銳角三角函數(shù)是解決此題的關(guān)鍵.3、B【分析】觀察表中數(shù)據(jù)得到拋物線y=ax2+bx+c與x軸的一個交點在(1.1,0)和點(1.2,0)之間,更靠近點(1.2,0),然后根據(jù)拋物線與x軸的交點問題可得到方程ax2+bx+c=0一個根的近似值.【題目詳解】∵x=1.1時,y=ax2+bx+c=﹣0.49;x=1.2時,y=ax2+bx+c=0.04;∴拋物線y=ax2+bx+c與x軸的一個交點在(1.1,0)和點(1.2,0)之間,更靠近點(1.2,0),∴方程ax2+bx+c=0有一個根約為1.1.故選:B.【題目點撥】本題主要考查拋物線與x軸的交點問題,掌握二次函數(shù)的圖象與x軸的交點的橫坐標(biāo)與一元二次方程的根的關(guān)系,是解題的關(guān)鍵.4、D【分析】利用一元二次方程的根的判別式列出不等式即可求出k的取值范圍.【題目詳解】解:由題意得=(2k+1)2-4(k2-1)=4k+5>0解得:k>-故選D【題目點撥】此題主要考查了一元二次方程的根的判別式,熟記根的判別式是解題的關(guān)鍵.5、B【分析】設(shè)這兩個數(shù)中較大的數(shù)為x,則較小的數(shù)為(x﹣1),根據(jù)兩數(shù)之積為1,即可得出關(guān)于x的一元二次方程,解之取其正值即可得出結(jié)論.【題目詳解】解:設(shè)這兩個數(shù)中較大的數(shù)為x,則較小的數(shù)為(x﹣1),依題意,得:x(x﹣1)=1,解得:x1=12,x2=﹣11(不合題意,舍去).故選:B.【題目點撥】本題考查的知識點是一元二次方程的應(yīng)用,找準(zhǔn)題目中的等量關(guān)系式是解此題的關(guān)鍵.6、B【分析】根據(jù)∠C=∠E以及∠BDE=∠ADC,可以得到△BDE∽△ADC,由AD:DE=2:3,AE=10,可以求出AD和DE的值,再利用對應(yīng)邊成比例,即可求出DC的長.【題目詳解】解:∵∠C=∠E,∠BDE=∠ADC∴△BDE∽△ADC∵AD:DE=2:3,AE=10∴AD=4,DE=6∴∴,解得:DC=故選B.【題目點撥】本題主要考查了相似三角形的判定和性質(zhì),熟練找出相似三角形以及列出對應(yīng)邊成比例的式子是解決本題的關(guān)鍵.7、B【分析】根據(jù)相似三角形的性質(zhì):周長之比等于相似比解答即可.【題目詳解】解:∵∽,相似比為,∴與的周長比為.故選:B.【題目點撥】本題考查的是相似三角形的性質(zhì),屬于應(yīng)知應(yīng)會題型,熟練掌握相似三角形的性質(zhì)是解題關(guān)鍵.8、C【分析】根據(jù)正六邊形的邊長相等,每個內(nèi)角為120度,可知圖案外圍輪廓的周長為三個半徑為1、圓心角為240度的弧長之和.【題目詳解】由題意可知:
∵正六邊形的內(nèi)角,∴扇形的圓心角,
∵正六邊形的邊長為1,
∴該圖案外圍輪廓的周長,
故選:C.【題目點撥】本題考查了弧長的計算公式,正多邊形和圓,正六邊形的性質(zhì),正確的識別圖形是解題的關(guān)鍵.9、A【分析】根據(jù)圓周角定理可得∠BAC=25°,又由AC∥OB,∠BAC=∠B=25°,再由等邊對等角即可求解答.【題目詳解】解:∵∠BOC=2∠BAC,∠BOC=50°,∴∠BAC=25°,又∵AC∥OB∴∠BAC=∠B=25°∵.OA=OB∴∠OAB=∠B=25°故答案為A.【題目點撥】本題考查了圓周角定理和平行線的性質(zhì),靈活應(yīng)用所學(xué)定理以及數(shù)形結(jié)合思想的應(yīng)用都是解答本題的關(guān)鍵.10、C【分析】根據(jù)拋物線的對稱軸和交點問題可以分析出系數(shù)的正負.【題目詳解】由函數(shù)圖象可得:a>0,c<0,所以b>0,2a-b=0,所以abc<0,拋物線與x軸的另一個交點是(1,0),當(dāng)x=2時,y>0,所以4,故③錯誤,因為,是拋物線上兩點,且離對稱軸更遠,所以故選:C【題目點撥】考核知識點:二次函數(shù)圖象.理解二次函數(shù)系數(shù)和圖象關(guān)系是關(guān)鍵.11、C【分析】首先連接OB,OA,由⊙O是正方形ABCD的外接圓,即可求得∠AOB的度數(shù),又由在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半,即可求得的度數(shù).【題目詳解】解:連接OB,OA,∵⊙O是正方形ABCD的外接圓,∴∠BOA=90°,∴=∠BOA=45°.故選:C.【題目點撥】此題考查了圓周角定理與圓的內(nèi)接多邊形、正方形的性質(zhì)等知識.此題難度不大,注意準(zhǔn)確作出輔助線,注意數(shù)形結(jié)合思想的應(yīng)用.12、C【分析】根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C+∠A=180°,代入求出即可.【題目詳解】解:∵四邊形ABCD內(nèi)接于⊙O,
∴∠C+∠A=180°,
∵∠A=80°,
∴∠C=100°,
故選:C.【題目點撥】本題考查了圓內(nèi)接四邊形的性質(zhì)的應(yīng)用.熟記圓內(nèi)接四邊形對角互補是解決此題的關(guān)鍵.二、填空題(每題4分,共24分)13、或或【分析】根據(jù)二次函數(shù)的性質(zhì)分兩種情形討論求解即可;【題目詳解】(1)當(dāng)時,恒成立(2)當(dāng)時,代入C(-1,1),得到,代入B(-3,1),得到,代入A(-4,2),得到,沒有交點,或故答案為:或或.【題目點撥】本題考查二次函數(shù)的應(yīng)用,二次函數(shù)的圖象上的點的特征等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.14、【分析】過點A作BC的垂線,垂足為D,則∠DAC=45°,∠BAD=30°,進一步推出AD=CD=AE=米,再根據(jù)tan∠BAD==,從而求出BD的值,再由BC=BD+CD即可得到結(jié)果.【題目詳解】解:如圖所示,過點A作AD⊥BC于D,則∠DAC=45°,∠BAD=30°,∵AD⊥BC,∠DAC=45°,∴AD=CD=AE=米,在Rt△ABD中,tan∠BAD==,∴BD=AD==23(米)∴BC=BD+CD=(米)故答案為.【題目點撥】本題主要考查了解直角三角形的應(yīng)用,解題的關(guān)鍵是從題目中整理出直角三角形并正確的利用邊角關(guān)系求解.15、【分析】根據(jù)函數(shù)解析式求得A(3,1),B(1,-3),得到OA=3,OB=3根據(jù)勾股定理得到AB=6,設(shè)⊙P與直線AB相切于D,連接PD,則PD⊥AB,PD=2,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【題目詳解】∵直線交x軸于點A,交y軸于點B,
∴令x=1,得y=-3,令y=1,得x=3,
∴A(3,1),B(1.-3),
∴OA=3,OB=3,
∴AB=6,
設(shè)⊙P與直線AB相切于D,連接PD,則PD⊥AB,PD=1,
∵∠ADP=∠AOB=91°,∠PAD=∠BAO,
∴△APD∽△ABO,
∴,
∴,
∴AP=2,
∴OP=3-2或OP=3+2,
∴P(3-2,1)或P(3+2,1),
故答案為:.【題目點撥】本題考查了切線的判定和性質(zhì),一次函數(shù)圖形上點的坐標(biāo)特征,相似三角形的判定和性質(zhì),正確的理解題意并進行分類討論是解題的關(guān)鍵.16、【分析】利用因式分解法把方程化為x-3=0或x-2=0,然后解兩個一次方程即可.【題目詳解】解:或,所以.故答案為.【題目點撥】本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.17、【分析】如圖所示,∠AOB=θ,OA=r,AB=l,∠AOC=∠BOC=,根據(jù),設(shè)AB=l=2a,OA=r=3a,根據(jù)等量代換得出∠BOC=∠BAE=,求出BE,利用勾股定理求出AE,即可表達出,代入計算即可.【題目詳解】解:如圖所示,∠AOB=θ,OA=r,AB=l,∠AOC=∠BOC=,∵AO=BO,∴OC⊥AB,∴,∴設(shè)AB=l=2a,OA=r=3a,過點A作AE⊥OB于點E,∵∠B+∠BOC=90°,∠B+∠BAE=90°,∴∠BOC=∠BAE=,∴,即,解得:,由勾股定理得:,∴,故答案為:.【題目點撥】本題考查了垂徑定理以及銳角三角函數(shù)的定義,解題的關(guān)鍵是熟練掌握垂徑定理的內(nèi)容,作出輔助線,求出AE的值.18、-2(答案不唯一,只要是負數(shù)即可)【分析】根據(jù)二次函數(shù)的圖像和性質(zhì)進行解答即可【題目詳解】解:∵二次函數(shù)的圖象開口向下,∴a<0∴取a=-2故答案為:-2(答案不唯一,只要是負數(shù)即可)【題目點撥】本題考查了二次函數(shù)的圖像和性質(zhì),熟練掌握相關(guān)知識是解題的關(guān)鍵,題目較簡單三、解答題(共78分)19、(1)畫圖見解析,π;(2)畫圖見解析,(4,4);(3)P3(2a,2b)或P3(-2a,-2b)【解題分析】(1)分別得出△ABC繞點O逆時針旋轉(zhuǎn)90o后的對應(yīng)點得到的位置,進而得到旋轉(zhuǎn)后的得到,而點A所走的路徑長為以O(shè)為圓心,以O(shè)A長為半徑且圓心角為90°的扇形弧長;(2)由點P的對應(yīng)點為P2(a+6,b+2)可知△ABC向右平移6個單位長度,再向上平移2個單位長度,即可得到的△A2B2C2;(3)以位似比2:1作圖即可,注意有兩個圖形,與點P對應(yīng)的點P3的坐標(biāo)是由P的橫、縱坐標(biāo)都乘以2或-2得到的.【題目詳解】解:(1)如圖所示,∵∴點A所走的路徑長為:故答案為π(2)∵由點P的對應(yīng)點為P2(a+6,b+2)∴△A2B2C2是△ABC向右平移6個單位長度,再向上平移2個單位長度可得到的,∴點A對應(yīng)點A2坐標(biāo)為(4,4)△A2B2C2如圖所示,(3)∵P(a,b)且以點O為位似中心,△A3B3C3與△ABC的位似比為2:1∴P3(2a,2b)或P3(-2a,-2b)△A3B3C3如圖所示,20、(1)證明見解析;(2)證明見解析【分析】(1)由角平分線的定義得出,再根據(jù)即可得出;(2)由相似三角形的性質(zhì)可得出,然后利用等腰三角形的性質(zhì)和等量代換得出,從而有,根據(jù)平行線的性質(zhì)即可得出,則結(jié)論可證.【題目詳解】(1)∵平分,∴∴(2)連接OC∵是的直徑,∵∵∴與相切.【題目點撥】本題主要考查相似三角形的判定及性質(zhì),切線的判定,掌握相似三角形的判定及性質(zhì),切線的判定方法是解題的關(guān)鍵.21、(1)25%,30;(2)見解析;(3)1800人【分析】(1)根據(jù)百分比之和等于1求出m的值,由0≤x<3的頻數(shù)及頻率求出總?cè)藬?shù),總?cè)藬?shù)乘以對應(yīng)的百分比求出n的值;(2)總?cè)藬?shù)乘以對應(yīng)的百分比求出a的值,從而補全直方圖;(3)總?cè)藬?shù)乘以對應(yīng)的百分比可得答案.【題目詳解】(1)抽取的學(xué)生人數(shù)為:(人);∴,.故答案為:25%,30;(2),補全頻數(shù)分布直方圖如解圖所示;(3)(人),答:估計學(xué)生每周閱讀時間x(時)在范圍內(nèi)的人數(shù)有1800人.【題目點撥】錯因分析:第(1)問,①未搞清楚各組百分比之和等于1;②各組頻數(shù)之和等于抽取的樣本總數(shù);第(2)問,不會利用各組的頻數(shù)等于樣本總數(shù)乘各組所占的百分比來計算,第(3)問,樣本估計總體時,忽略了要用總?cè)藬?shù)乘時間段“6~9和9~12”這兩個時間段所占的百分比之和.22、(1);(2)值有或【分析】(1)過點作于點,根據(jù),可求出△AOB的面積8,由等腰三角形的三線合一可知△AOD的面積為4,根據(jù)反比例函數(shù)k的幾何意義幾何求出k;
(2)分兩種情況討論:①當(dāng)邊的中點在的圖象上,由條件可知,即可得到C點坐標(biāo)為,從而可求得m;②當(dāng)邊的中點在的圖象上,過點作于點,由條件可知,,因此中點,從而可求得m.【題目詳解】解:(1)過點作于點,如圖1∵,∴,∴,,即(2)①當(dāng)邊的中點在的圖象上,如圖2∵,∴,,點,即∴②當(dāng)邊的中點在的圖象上,過點作于點,如圖3∵,,∴中點即∴綜上所述,符合條件的值有或【題目點撥】本題考查了用待定系數(shù)法求反比例函數(shù)的解析式,掌握直角三角形、等邊三角形的性質(zhì)以及分類討論思想是解題的關(guān)鍵.23、(1);;菱形;2;(2);(3),或,.【分析】(1)當(dāng)y=0時可求出點A坐標(biāo)為,B坐標(biāo)為,AB=4,根據(jù)四邊形四邊相等可知該四邊形為菱形,由可知拋物線頂點坐標(biāo)為(1,-4),所以B,AB=8,即可得到為2;(2)驚喜度為1即,利用拋物線解析式分別求出各點坐標(biāo),從而得到AC和BD的長,計算即可求出m;(3)先求出頂點坐標(biāo),對稱軸為直線,討論對稱軸直線是否在這個范圍內(nèi),分3中情況分別求出最大值為16是m的值.【題目詳解】解:(1)在拋物線上,當(dāng)y=0時,,解得,,,∵點在點右邊,∴A點的坐標(biāo)為,B點的坐標(biāo)為;∴AB=4,∵∴頂點B的坐標(biāo)為,由于BD關(guān)于x軸對稱,∴D的坐標(biāo)為,∴BD=8,通過拋物線的對稱性得到AB=BC,又由于翻折,得到AB=BC=AD=CD,∴驚喜四邊形為菱形;;(2)由題意得:的頂點坐標(biāo),解得:,∴∴,(3)拋物線的頂點為,對稱軸為直線:①即時,,得∴②即時,時,對應(yīng)驚喜線上最高點的函數(shù)值,∴(舍去);∴③即時形成不了驚喜線,故不存在綜上所述,,或,【題目點撥】本題主要考查了二次函數(shù)的綜合問題,需要熟練掌握二次函數(shù)的基礎(chǔ)內(nèi)容:頂點坐標(biāo)、對稱軸以及各交點的坐標(biāo)求法.24、(1)詳見解析;(2)10m【分析】(1)連接AC,過點D作DF∥AC,交直線BC于點F,線段EF即為DE的投影;(2)易證△ABC∽△DEF,再根據(jù)相似三角形的對應(yīng)邊成比例進行解答即可.【題目詳解】(1)連接AC,過點D作DF∥AC,交直線BC于點F,線段EF即為DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE,∵∠ABC=∠DEF=90°,∴△ABC∽△DEF,∴AB:DE=BC:EF,∵AB=5m,BC=3m,EF=6m,∴5:DE=3:6,∴DE=10m.【題目點撥】本題主要考查相似三角形的應(yīng)用,解此
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電動汽車市場多樣化發(fā)展策略試題及答案
- 教師面試教育試題及答案
- 安全工程師職業(yè)生涯發(fā)展路徑探討試題及答案
- 余姚6年級數(shù)學(xué)試卷及答案
- 印刷廠試卷及答案五年級
- 教師地理考調(diào)試題及答案
- 水產(chǎn)加工面試題及答案
- 掌握2025年商務(wù)英語考試必閱試題及答案
- 節(jié)奏表現(xiàn)形式教育試題及答案
- 小學(xué)教育教學(xué)反思融合性考察試題
- 農(nóng)服公司招聘試題及答案
- 2025年杭州市高三語文二模作文題目“科技與相互理解”寫作指導(dǎo)
- 小學(xué)生攝影課件
- 2025(標(biāo)準(zhǔn))承包清工勞務(wù)合同協(xié)議書范本
- 合伙入股協(xié)議合同范本
- 急救與心理技能(視頻課)知到智慧樹章節(jié)測試課后答案2024年秋中南大學(xué)
- DG-TG08-12-2024 普通中小學(xué)建設(shè)標(biāo)準(zhǔn)
- 冀教 七年級 下冊 數(shù)學(xué) 第7章《平行線的性質(zhì)》課件
- 《新媒體文案創(chuàng)作與傳播(第2版微課版)》全套教學(xué)課件
- 征信異議申請書
- 隧道反坡排水、施工通風(fēng)專項施工方案
評論
0/150
提交評論