外文翻譯-利用層次分析法選擇各類發(fā)電廠及外文翻譯-一個魯棒的基于機器視覺運動目標檢測與跟蹤系統_第1頁
外文翻譯-利用層次分析法選擇各類發(fā)電廠及外文翻譯-一個魯棒的基于機器視覺運動目標檢測與跟蹤系統_第2頁
外文翻譯-利用層次分析法選擇各類發(fā)電廠及外文翻譯-一個魯棒的基于機器視覺運動目標檢測與跟蹤系統_第3頁
外文翻譯-利用層次分析法選擇各類發(fā)電廠及外文翻譯-一個魯棒的基于機器視覺運動目標檢測與跟蹤系統_第4頁
外文翻譯-利用層次分析法選擇各類發(fā)電廠及外文翻譯-一個魯棒的基于機器視覺運動目標檢測與跟蹤系統_第5頁
已閱讀5頁,還剩23頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

英文原文Multi-criteriaselectionofelectricpowerplantsusinganalyticalhierarchyprocessAbstractThispaperusesanalyticalhierarchyprocess(AHP)methodologytoperformacomparisonbetweenthedifferentelectricitypowerproductionoptionsinJordan.Thesystemswhichwereconsidered,inadditiontofossilfuelpowerplants,arenuclear,solar,wind,andhydro-power.Resultsoncosttobenefitratiosshowthatsolar,wind,endhydro-powermaybethebestalternativesforelectricpowerproduction.Nuclearelectricityturnsouttobetheworstchoice,followedbyfossilfuelelectricpower.1.IntroductionJordanisanon-oilproducingMiddle-Easterncountry.Itreliesheavilyonimportingoilfromneighboringcountries.Mostoftheelectricpowerthatisgeneratedtoservedifferentsectorsofthecountryisproducedfrompowerplantsthatusefossilfuel.Thisfueliseithertotallyimportedsuchaspetroleumhydrocarbonfuel,orpartiallylocal(onlywithsmallpercentage)suchasnaturalgas.The1996electricalenergyconsumptioninJordanreachedavalueof6000GWh.About93%ofhisamountwasproducedbytheNationalElectricPowerCompany(NEPCO)whichisthemainelectricitysupplierinthecountry[1].Otheroptionsoralternativesofenergysourcesforelectricpowergenerationmustteeconsidered.Theseoptionsmayincludenuclear,solar,wind,orhydro-electricenergies.TheJordanianexperiencewithelectricitygenerationusingsolarandwindenergytechnologyhasbeenonthesmallandexperimentalscale.TheserenewableenergysystemswereutilizedinmostlyremoteareasofJordan.Theyareusedtogenerateelectricpowerforindividualapplicationsuchasclinics,lighting,andeducationaltelevisionsets.TheremotevillageofJurfEldaraweeshlocatedintheJordandesertofapopulationof600,isthebestexample[2].Thenecessaryelectricalenergyistotallysuppliedbysolarandwindenergyconversionsystems.Inthispaper,oil-firedpowerplantsinadditiontootheralternativesarebeingevaluated.Theotheralternativesincludenuclear,solar,windandhydro-power.Abriefdescriptionofvariouspowerplanttechnologieswillbepresented.Usingadecision-supportsystemthroughamultiplecriteriaanalysis,suchasAHP,anattemptwillbemadetoassistdecisionmakerstoevaluatetheuseoftheabovetechnologieswhichcanbemostsuitableforelectricalpowerproductioninJordan.2.Fossil-fuelelectricalpowerplantsIngeneral,fossilfuelsarenon-renewable.Theyoriginatefromtheearthasaresultofdecompositionandchemicalconversionoforganicmaterials.Theycomeinthreeorganicforms:(1)solid,e.g.coalandoilshale;(2)liquid,e.g.mostpetroleumproducts,and(3)gas,e.g.naturalgas.Coalrepresentsthelargestfossil-fuelenergyresourceinelectricpowergeneration[3,4].OilshaleisafossilfuelthatexistsinJordaninabundance,butwithunattractivephysicalproperties.First,likealloilshales,ithasalowheatingvalueduetothehighashcontent[5].Secondly,theJordanianoilshalehassulfurcontents,ranging4–6%[6].Becauseoflowpricesofpetroleumworldwidetheutilizationofsolidfossilfuels,suchasoilshale,cannotbefeasibleatthetimebeing.Therefore,oilshalepowerplantscannotbeconsideredtobecompetitive[3].PetroleumandnaturalgasarethemainfuelsusedfortheelectricpowergenerationinJordaninadditiontosmallhydro-poweredelectricitygenerationplants.Table1representstheexistingelectricalpowerplantsinJordan[1].3.ElectricitypowerproductionusingsolarenergySincethe1970ssolarenergyhasreceivedthegreatestattentionofallrenewableenergysourcesallovertheworld.Manyregarditasthesolutionforcleanerenvironmentandmaybethealternativetofossilandnuclearfuels.Thus,solarenergyhasbeentheobjectforproductionofelectricalpower.Manystudiesandexperienceshaveshownthatsolarthermalpowerplantsareoneofthemosteconomicformsofsolarelectricitygeneration.Solarenergycanbeconvertedintoelectricitybyphotovoltaiccells,butthisprocessismostlyconvenientandsuitableforsmallapplicationsonly.Standalonephotovoltaicpowersystemswereproposedforelectrificationofremoteareasofwhichtheyarelocatedoutsidetheelectricitygrid-connectionsupplysystem[7].Ontheotherhand,solarenergycanbeconvertedintothermalenergybymeansofsolarcollectorsorconcentrators.Aworkingfluidisusedtoconvertthethermalenergyintomechanicalenergywhichisthenconvertedintoelectricity.Unlikephotovoltaics,largeamountsofelectricalpowercanbegeneratedfromsuchplants.Thetypesofreceiversthatcanbeseriouslyconsideredare:(1)centralreceivers,(2)dispersedordistributedreceiversand(3)solarponds.LikemostcountriesoftheMiddleEast,Jordanenjoyslongperiodsofsunshine.Thelocalweatherhasover300cloudlessdaysperyear.FuturetechnologysuggeststhattheDeadSeaitselfcanbeusedas450km2solarlake,operatinga2500MWpowerplant[8].Inarecentstudy,thepotentialofusingtheDeadSeaasalargenaturalsolarpondforgenerationofelectricityinJordanwasexplored[9].Kribusetal.[10]haveshownnewsolarpowerplantconceptbyincorporatingnewdevelopmentsofsolarpoweroptics,highperformanceairreceivers,andsolar-to-gasturbineinterface.Intermsofeconomicalpointofview,Kolb[11]foundhybridpowertowerstobesuperiortosolar-onlyplantswiththesamefieldsize.Thereisanumberofsolarthermalpowerplantsinoperationaroundtheworld.Theyarefoundtobeoneofthemosteconomicalsystemsforgeneratingelectricity[12,13].Recently,theco-generationofelectricityandpotablewaterbyutilizationofsolarenergywascarriedout[14,15].Thiskindofsystemlooksattractiveinremoteareaswherebothwaterisscaresandelectricitygridisnotavailable.Thesystemiscapableofproducing30MWeormore.4.ElectricalpowerproductionusingwindenergyItisverywellestablishedthatwindenergyresourceislargeandgloballywidespread.Fordifferentapplications,itisclearthatwindenergycanbecompetitiveinmanylocations[16–18].Windenergycanbeusedinmanyapplicationssuchaswaterpumping[19],andwaterdesalination[20].Itcanalsobeusedfortheelectricalpowergenerationusingwindenergyconversionsystem[21].Windpowerisexpectedtobeoneoftheleastexpensiveformsofnewelectricalgenerationinthetwenty-firstcentury[22].WithglobaleffortstobecometoughonfossilfuelrelatedenergysystemsandtoreducetheemissionsofCO2significantly,thiswillmostlikelyintroducelowercostwindsystems.Forexample,largewindpowerplantsatgoodwindsitesusingemergingtechnologiescandeliverelectricityintoutilitygridatlowpricesthatarebecomingcompetitivewiththoseofconventionalpowergeneration.Windpowerplantscanusehundredsofwindturbinesthatrangeinsizefrom50to500kWeachlocatedinsomeremoteareas.Theplant’scomputerizedandcontrolcenteroperatessimilartofossilfuelplants,exceptitdoesnothavetobeinsightofturbines.Inarecentstudyamodelofwindpowerplantforisolatedlocationwaspresented[23].Increasesinthepricesoffuelandcostoffossilfuelplantsandinrelyinglessonnon-renewableenergyresources,decreasethevalueandcostofwindpowergenerationsystemssignificantly[24,25].TherearenumberofsitesinJordanwithpotentiallyhighwindspeeds,thatcanbeutilizedforthispurpose[26,27].Habalietal.[27]havepresentedanevaluationofwindenergyinJordananditsapplicationforelectricalpowergeneration.Atotalof11windsiteswereconsideredcoveringtheentirecountry.ThethreemostpotentialsitesinJordanarefoundtobeRasMuneef,Mafraq,andAqaba.Theyhavewindspeedsthatrangefrom4to23msthroughout80%ofthewholeyear.5.Hydro-electricpowerplantsHydro-electricpowerplantscanprovideabasisforevaluatingthepotentialofrenewablesourcesofenergy.Whencomparedtootherthermalpowerplants,theyarefoundtobeconventionalandreliable.Somecountriesutilizethisformoffreenaturalenergyintousefultypeofelectricalpower.Forexample,11%oftheelectricpowerproducedintheUSAwasprovidedbyhydro-electricpower[4].EgyptandTurkey,countriesofthisregion,alsoutilizethistypeofpowerforgeneratingelectricityatlowcosts.Anumberofstudieswereinvolvedinutilizinghydro-powerinJordanforthepurposeofelectricityproduction[28],waterdesalination[29,30],andbothelectricityproductionandwaterdesalination[8,31].Thesestudies,mainly,consideredthelinkageofRedandDeadSeaswithacanaltogeneratehydro-power.TheDeadSeaisabout400mbelowsealevel(BSL),itisroughly200kmtothenorthoftheGulfofAqaba.ItisanextensionoftheRedSea.TheDeadSeahasnooutlet;itswaterlevelisafunctionofinflowandevaporationofwater.ForthousandsofyearstheDeadSeamaintainedanequilibriumwiththeannualinflowandevaporationofwater.Thisresultedinaconstantsealevel.Forexample,in1930thesurfaceoftheDeadSeawasmeasuredatitshistoricalelevationofabout390mBSL.TheJordanRiverisconsideredtobethemaintributaryoftheDeadSea.Overtheyearsduetoincreaseinpopulationandagriculturaldevelopment,waterwasdivertedforirrigationintheJordanValleyandneighboringcountries.Therefore,itselevationwasforcedtodrop,drastically;in1993itwas408mBSL.Tohaltthistrend,itwillbenecessarytointroduceasubstantialamountofnewwatertothesea.SeawaterfromtheRedSeacanbeusedasasourceofwaferneededfordiversionintotheDeadSea.Thisdiversioncanbeusedtoeithermaintaintheseaatitscurrentlevelandthusstopitsdropping,oreventobringitbacktoitshistoricallevel.ThepowerobtainedfromsuchprocesscanbeusedtogenerateelectricityandallowevenmorefreshwatertobedivertedfromtheJordanRiver.6.NuclearpowerplantsItisverywellknownfactthatforthosecountriesthatrelyonbutdonothaveoil,nuclearpowerbecomesastrategicaswellaseconomicnecessity[3].Nuclearpowerplantscanpayfortheircapitalcostinafewshortyears.Thus,alessexpensiveelectricpowercanbeproducedwithoutrelyingonimportingforeignoil,oratleastthereductioninoilimport.Somebelievethatonedayoilwillbedepleted,andnuclearpowerbecomesamust.Therefore,itisimportanttostartthistechnologynowinordertoassurethecountrywouldnotbeleftbehindwhenthetimecomestohavetousenucleartechnology.Nuclearelectricityoffersanadvantagefromanenvironmentalpointofviewandairpollution.Ithaslessenvironmentalproblemsthatareassociatedwithoil-firedpowerplants.Thus,nuclearpowerisboundtobecomethechoiceofpowerforthefuture.Therearesomedifficultiesthatareassociatedwithnuclearpower,namely,wastedisposalandsafety.Ifthiskindofenergybecomespopularinmostcountriesaroundtheworld,solutionstotheseproblembecomeamustandthusbefound.7.TheanalytichierarchyprocessTheanalytichierarchyprocess(AHP),whichwasdevelopedbySaaty[32],hasbeenaneffectivetoolinstructuringandmodelingmulti-objectiveproblems.Forexample,ithasbeenappliedtobusinessdecisions[33],selectionofareasofresearchanddevelopmentprograms[34],realestateinvestments[32],waterpolicies[35],andwaterdesalinationtechnologies[29].AHPcanassistdecisionmakerstoevaluateaproblemintheformofahierarchyofreferencesthroughaseriesofpairwisecomparisonsofrelativecriteria.Briefly,relativeweightsaredeterminedthroughpairwisecomparison.Themethodcanbeappliedbybreakingdowntheunstructuredcomplexscorecardproblemsintocomponentparts.Hierarchicalordersarethenarrangedbyformingvaluetreestructures.Subjectivejudgmentsontherelativeimportanceofeachpartarerepresentedbyassigningnumericalvalues;thenumericalvaluesareselectedinaccordancetoFig.1.Thesejudgmentsarethensynthesizedintheuseofeigenvectorstodeterminewhichvariableshavethehighestpriority.ThedecisionregardingtheselectionofanoptimumsystemforelectricitypowergenerationinJordanwasevaluatedaccordingtobenefitsandcosts.Cost-tobenefitanalysisisobtainedbyseparatingcostsfrombenefitsandstructuringseparatehierarchiesforbenefitsandcosts.TheywereconstructedasshowninFigs.2and3.Theoverallobjective(goal)forbothhierarchieswastoselectanoptimumsystem(i.e.level1).Fig.2showsthecosthierarchy.Thecostcriteriaatlevel2arecostoffuel,hardwarecost,maintenanceandservice,auxiliarysystem,andenvironmentalconstraints.Fig.3presentsthebenefithierarchy,itincludesallpossiblebenefitsthatmaybederivedfromthevariouselectricalpowergenerationpowerplants,asappliedtoJordan.Level1ofFig.3istheselectionoftheoptimumsystemintermsofbenefits.Thebenefitcriteriaatlevel2aretheefficiencyofthesystem,itsreliability,itssafety,availabilityofthefuelusedinthesystem,itseffectonnationaleconomy,andsocialbenefits.ThethirdlevelofthecostandbenefithierarchiesrepresentsthevarioustechnologiesoralternativeswhicharegoingtobeconsideredforelectricalpowerproductioninJordan.Inadditiontofossilfuelfiredpowerplantsthesesystemsincludenuclear,solar,wind,andhydro-power.8.ResultsanddiscussionFig.2showsthatnuclearandfossilfuelpowerplantshavethehighestcost,withrelativeweightsof0.429and0.337,respectively.Ontheotherhandsolar,wind,andhydrohavemuchlowervaluesofrelativeweightsintherangeof0.077–0.079.Itisbasedonthecosthierarchywhichindicatesthatcostoffuelhasthehighestrelativeweightof0.375amongallothercostsconsidered.Itisfollowedbyhardwareandmaintenancecosts;theirrelativeweightis0.215each.Environmentalconstraintsandtheneedofauxiliarysystemhavethelowestrelativeweightswithvaluesof0.122and0.074,respectively.Benefitshierarchy(Fig.3)showsthatfossilfuelpowerplanthasthemostbenefitshavingarelativeweightof0.255.Itisfollowedbysolarandwindpowerplants;theircorrespondingrelativeweightsare0.162and0.130,respectively.System’sreliabilityhasthehighestrelativeweightof0.365.Itisfollowedbyavailabilityoffuel,system’sefficiency,itseffectonnationaleconomy,safetyandthensocialbenefits.Inordertogivethecompletepicturetheoverallcostpriorities(relativeweights)weredividedbythebenefitpriorities.Anoverallnormalizedcost-tobenefitratiowasobtainedforeachsystem.TheyarepresentedinFig.4.Itisshownthatnuclearelectricalpowerplantshavethehighestoverallcost-to-benefitratio,witharelativeweighsvalueof0.57.Fossilfuelpowerplantshavethesecondrelativeweightofabout0.23.Thebestsystemswithlowestcost-to-benefitratiosaresolar,followedbywindandthenhydrohavingrelativeweightsof0.058,0.061,and0.083,respectively.9.ConclusionsBasedonAHP,solarelectricalpowerplantshavethepotentialtobethebesttypeofsystemforelectricityproductioninJordan.Theyarefollowedbywindandthenhydro-powerplants.Onecanarguethatallthreetechnologiesoranyofthetwocombinedcanbeusedsincetheyhavecloserelativeweights.Ontheotherhandnuclearpowerplantshavetheworstratingandfossilfuelpowerplantsaresomewhatlittlebetterthannuclear.中文譯文利用層次分析法選擇各類發(fā)電廠摘要本文運用層次分析法(AHP)詳細地介紹了利用不同能源進行發(fā)電。這個理論認為,除了化石燃料發(fā)電廠,還有核能、太陽能、風能、水電。結果表明,成本效益比較好的太陽能、風能、水電可能是電力生產的最佳選擇。核能發(fā)電是最壞的選擇,緊隨其后的是化石燃料發(fā)電。1.介紹約旦是非石油生產的中東國家。它進口的石油來自鄰近國家。大部分的電力來自國家不同的電力行業(yè),這些電廠使用化石燃料。這些燃料不是完全進口的石油碳氫燃料,或部分地方(只有很小的百分比,例如天然氣)是碳氫燃料。1996年的電能消耗的價值達到了約6000美元/年。他數量的93%是由國家電力公司(NEPCO)供應的,國家電力公司是在這個國家主要的電力供應商。其他選擇的能源發(fā)電必須加以考慮。這些選項可以包括核能、太陽能、風能、水電能源。約旦太陽能和風能發(fā)電技術已在小規(guī)模實驗。這些可再生能源的利用系統主要的偏遠地區(qū)。他們生產的電力被用來個人申請,如診所、照明、教育的電視機。這個偏遠的村子位于約旦沙漠,是世界上最好的例子。所需的電能是完全由太陽能和風能轉化系統提供。在這篇文章中,除原油電廠,其他方案都被評估。提出了一個簡短的描述各種電站技術的方案,該方案包括核能、太陽能、風力和水力。通過使用決策支持系統分析多重標準,如層次分析法(AHP),試圖協助決策者評估使用上述技術,它在約旦可以是最適合電力生產的方案。2.化石燃料發(fā)電一般來說,化石燃料是不可再生的。他們來自地球的分解和化學轉化的有機材料。他們有三類:(1)固體,如煤和石油頁巖;(2)液體,如大多數石油化工產品。(3)氣體,例如天然氣。電力是最大的縮減燃料能源的代表。石油是一種化石燃料,在約但河中存在豐富。首先,就像所有的石油頁巖,它有一個較低的加熱價值。其次,約旦石油頁巖有硫磺含量,4-6%。由于石油的價格低,世界范圍內的利用率高的化石燃料,如石油頁巖。因此,石油頁巖發(fā)電廠可以不被認為是競爭的。在約旦除了小水電動力發(fā)電,石油和天然氣是主要的發(fā)電燃料。3.太陽能發(fā)電自20世紀70年代,太陽能已經在世界各地開始使用。許多國家把它作為解決環(huán)境污染和可能替代化石和核能的能源。因此,太陽能已經作為生產電力的對象。許多研究和經驗表明,太陽能發(fā)電是電力行業(yè)中最經濟發(fā)電形式。太陽能也能被轉換成電池,但是這個過程光伏電池是最方便的,但適用于小型應用。獨立光伏電源系統提出了電氣化偏遠地區(qū)的電力電網連接外供電系統[7]。另一方面,太陽能量可以轉化熱能,利用太陽能集熱器或集中器等。如把太陽能轉換成熱能,然后變成機械能,再轉化為電能。大量的電力也可以產生電池。這個類型的接收器,能認真考慮是:(1)中心的接收器,(2)分布式接收器和(3)太陽池。喬丹最喜歡享受中東國家漫長的陽光,當地的天氣已超過300萬里無云的日子。未來技術表明,死海本身可以作為450平方公里,2500兆瓦電廠,運行一個太陽能湖。最近的一份報告研究,死??勺鳛闈撛诶玫拇笮吞烊惶柍?。從經濟的角度講,發(fā)現的混合動力塔只有太陽與同一領域的尺寸。有大量的太陽能熱發(fā)電廠在操作環(huán)游世界。他們發(fā)現是其中最經濟系統是用于太陽能發(fā)電。這類系統很有吸引力的地方都是水邊遠地區(qū)電網嚇人,不是可利用的。該系統能夠生產30MW電能或更多。4.風能發(fā)電風能非常好的一面在全球范圍內廣泛存。對于不同的應用程序,很明顯的是,風能可以在許多位置有競爭優(yōu)勢。風能可以應用在許多場合,如抽水、海水淡化。它還可以用于發(fā)電用風能量轉換系統。風力發(fā)電有望成為二十一世紀新電子產生的最便宜的形式。全球的化石燃料與相關的能量系統變得強硬,為減少排放的二氧化碳,風系統的介紹可能顯著降低成本。例如,大型的風力發(fā)電在風網站利用新興技術能提供公用電網電在低價競爭關系,成為傳統發(fā)電。風力發(fā)電廠可以用數以百計的風力渦輪,范圍大小從50到500千瓦各座落在一些遙遠的地區(qū)。工廠的計算機控制中心設有類似的化石燃料植物,除了它不需要的渦輪機。最近的研究模式是定位算法風力發(fā)電裝置。價格上漲的燃料和成本的化石燃料的依賴,在植物上的不可再生的能源資源,降低成本和價值的風力發(fā)電系統明顯。在約旦有潛在的高速度有數字的網站,可用于該目的。所提交的評估,風能在約旦和其申請電力。風地點被覆蓋了整個國家。這三個最具發(fā)展?jié)摿Φ牡攸c被發(fā)現是在約旦,易燃、臨亞喀巴灣。他們風速范圍從4至23日已經達到80%。5.水力發(fā)電水力發(fā)電廠可以對潛在的可再生能源提供了評估依據。相較于其他的火電廠,他們是傳統的和可靠的。一些國家利用這種形式的免費天然能量轉化為有用類型的電力。例如,在美國11%的電力生產是水電。埃及和土耳其國家的這一地區(qū),還將這種類型的動力用于在低成本發(fā)電。在約旦大量的研究是參加利用水力發(fā)電為目的的海水淡化,在這些研究成果的基礎上,主要考慮的紅河和死海的聯系與運河海產生水電。死海低于海平面(BSL)400米,大約200公里,北臨亞喀巴灣灣,它是一種擴展紅海。死海沒有出路;其水位是一個函數及水的蒸發(fā)。幾千年來,死海維護一個年度流入和蒸發(fā)水的平衡。這導致了一個常數。例如,在1930年死海的表面測量其歷史的高度大約390米BSL。約但河,被認為是死海的主要支流。在約旦河谷和灌溉的鄰國,多年來由于人口和農業(yè)發(fā)展增加,水被轉移。因此,它的海拔被迫大幅下降,1993年,BSL408米。來阻止這種趨勢,必須引進大量的新水流入大海。從紅海海水可以用來作為一種來源需要移師死海。這種轉移可以用來保持在海洋目前的水平,從而阻止其下降,甚至帶它回到歷史的水平。從這樣的過程中獲得的力量可以用來發(fā)電,更多的新鮮水要從約但河引入。6.核能發(fā)電在這些國家,依靠油卻沒有,這是非常有名的事實。發(fā)展核電已成為戰(zhàn)略以及發(fā)展經濟必要。核能電廠有能力在短短數年支付他們的資本成本。因此,一個更便宜的電力可以不用依賴進口國外石油,或至少減少石油進口。有些人相信有一天油會枯竭了,核能成為必然趨勢。因此,重要的是開始這個技術,以保證國家將不會被甩在后面的時候要用核技術。核能發(fā)電提供一個優(yōu)勢,從環(huán)境角度和空氣污染。它擁有更少的環(huán)境問題與原油電廠。因此,核能是注定要成為選擇的力量以備將來之用。核能有一些困難,即廢物處置和安全。如果這種能量在世界上多數國家變得流行,解決這些問題的方案,從而成為必須的研究。7.層次分析法層次分析法(AHP)在構建和建模多目標的問題上已經是一個有效的工具。例如,它已經應用于商業(yè)決策,選擇領域的研究和發(fā)展項目、水政策和海水淡化技術。層次分析法(AHP)可以幫助決策者評估一系列問題的參考比較,通過一系列的相對標準。簡要分析,通過兩兩比較確定權重。該方法可以被分解成計分卡問題的組成部分。然后安排的層次訂單價值形成樹形結構。各部分的相對重要性由指定的數值主觀判斷。這些判斷是利用向量來確定哪些因素已經具有最高優(yōu)先級。這個決定對于選擇最佳電力系統電力被評為根據收益和成本,費用由分離層次構建獨立的收益和成本。整體目標都是選擇一個最佳等級系統。標準費用成本的二級燃料是硬件成本、維護、維修、輔助系統、環(huán)境的約束。據分析,它包括所有益處的等級可能來自不同的發(fā)電核電站。受益于二級燃料是標準的系統的效率,其使用燃料系統的可靠性、安全性、有效性,是影響國民經濟和社會效益的主要因素。選擇或代表第三級的成本與效益的各種層次技術,要考慮在約旦的電力生產。此外,化石燃料發(fā)電廠這些系統包括核、太陽能、風能、水電。8.結果與討論研究顯示,核和化石燃料是成本最高的電廠,相對權重0.3370.429。另一方面太陽能、風能、水電有較低的價值,相對權重在0.077-0.079的范圍內。它是基于層次成本在所有其它費用表明燃料成本最高的,相對權重0.375。緊隨其后的是硬件和維護成本;他們的相對權重是0.215。環(huán)境的約束和需要的輔助系統的權重和價值觀的最低0.074和0.122。福利層次表明,化石燃料發(fā)電廠最大的利益有一個相對重量0.255。是緊隨其后的太陽能、風能,其相應的相對權重0.130、0.162。系統的可靠性具有最高的相對權重0.365。緊隨其后的是觸手可及的燃料,系統的效率,其影響國民經濟和社會效益、,安全。為了給這個總成本(相對權重)除以完整的優(yōu)先效益考慮的問題,每個系統的全面規(guī)范成本效益得到了。理論分析和實驗結果表明,核電有最高的整體成本效益比例,與一個相對重量價值0.57?;剂习l(fā)電廠有第二個相對權重0.23。最好的系統以及最低的成本效益為太陽能,緊隨其后的是風能和海能,相對權重分別是0.061,0.058,0.083,。9.結論基于層次分析法(AHP),在約旦發(fā)電,太陽能電力有潛力成為最好的系統,其次是風,然后水力發(fā)電廠。有人說,所有的三種技術或任何兩個組合可以用,因為他們有密切相關的重量。附錄=1\*ROMANI外文文獻翻譯(1)原文:ARobustVision-basedMovingTargetDetectionandTrackingSystemAbstractInthispaperwepresentanewalgorithmforreal~timedetectionandtrackingofmovingtargetsinterrestrialscenesusingamobilecamera.Ouralgorithmconsistsoftwomodes:detectionandtracking.Inthedetectionmode,backgroundmotionisestimatedandcompensatedusinganaffinetransformation.Theresultantmotionrectifiedimageisusedfordetectionofthetargetlocationusingsplitandmergealgorithm.Wealsocheckedotherfeaturesforprecisedetectionofthetargetlocation.Whenthetargetisidentified,algorithmswitchestothetrackingmode.ModifiedMoravecoperatorisappliedtothetargettoidentifyfeaturepoints.Thefeaturepointsarematchedwithpointsintheregionofinterestinthecurrentframe.Thecorrespondingpointsarefurtherrefinedusingdisparityvectors.Thetrackingsystemiscapableoftargetshaperecoveryandthereforeitcansuccessfullytracktargetswithvaryingdistancefromcameraorwhilethecameraiszooming.Localandregionalcomputationshavemadethealgorithmsuitableforreal-timeapplications.Therefinedpointsdefinethenewpositionofthetargetinthecurrentframe.Experimentalresultshaveshownthatthealgorithmisreliableandcansuccessfullydetectandtracktargetsinmostcases.Keywords:realtimemovingtargettrackinganddetection,featurematching,affinetransformation,vehicletracking,mobilecameraimage.1IntroductionVisualdetectionandtrackingisoneofthemostchallengingissuesincomputervision.Applicationofthevisualdetectionandtrackingarenumerousandtheyspanawiderangeofapplicationsincludingsurveillancesystem,vehicletrackingandaerospaceapplication,tonameafew.Detectionandtrackingofabstracttargets(e.g.vehiclesingeneral)isaverycomplexproblemanddemandssophisticatedsolutionsusingconventionalpatternrecognitionandmotionestimationmethods.Motion-basedsegmentationisoneofthepowerfultoolsfordetectionandtrackingofmovingtargets.Itissimpletodetectmovingobjectsinimagesequencesobtainedbystationarycamera[1],[2],theconventionaldifference-basedmethodsfailtodetectmovingtargetswhenthecameraisalsomoving.Inthecaseofmobilecameraalloftheobjectsintheimagesequencehaveanapparentmotion,whichisrelatedtothecameramotion.Anumberofmethodshavebeenproposedfordetectionofthemovingtargetsinmobilecameraincludingdirectcameramotionparametersestimation[3],opticalflow[4],[5],andgeometrictransformation[6],[7].Directmeasurementofcameramotionparametersisthebestmethodforcancellationoftheapparentbackgroundmotionbutinsomeapplicationitisnotpossibletomeasuretheseparametersdirectly.Geometrictransformationmethodshavelowcomputationcostandaresuitableforrealtimepurpose.Inthesemethods,auniformbackgroundmotionisassumed.Anaffinemotionmodelcouldbeusedtomodelthismotion.Whentheapparentmotionofthebackgroundisestimated,itcanbeexploitedtolocatemovingobjects.Inthispaperweproposeanewmethodfordetectionandtrackingofmovingtargetsusingamobilemonocularcamera.Ouralgorithmhastwomodes:detectionandtracking.Thispaperisorganizedasfollows.InSection2,thedetectionprocedureisdiscussed.Section3describesthetrackingmethod.ExperimentalresultsareshowninSection4andconclusionappearsinSection5.2TargetdetectionInthedetectionmodeweusedaffinetransformationandLMedS(Leastmediansquared)methodforrobustestimationoftheapparentbackgroundmotion.Afterthecompensationofthebackgroundmotion,weapplysplitandmergealgorithmtothedifferenceofcurrentframeandthetransformedpreviousframetoobtainanestimationofthetargetpositions.Ifnotargetisfound,thenitmeanseitherthereisnomovingtargetinthesceneor,therelativemotionofthetargetistoosmalltobedetected.Inthelattercase,itispossibletodetectthetargetbyadjustingtheframerateofthecamera.Thealgorithmaccomplishesthisautomaticallybyanalyzingtheproceedingframesuntilamajordifferenceisdetected.Wedesignedavotingmethodtoverifythetargetsbasedonaprioriknowledgeofthetargets.Forthecaseofvehicledetectionweusedverticalandhorizontalgradientstolocateinterestingfeaturesaswellasconstraintonareaofthetargetasdiscussedinthissection.2.1BackgroundmotionestimationAffinetransformation[8]hasbeenusedtomodelmotionofthecamera.Thismodelincludesrotation,scalingandtranslation.2~Daffinetransformationisdescribedasfollow:(1)where(xi,yi)arelocationsofpointsinthepreviousframeand(Xi,Yi)arelocationsofpointsinthecurrentframeanda1~a6aremotionparameters.Thistransformationhassixparameters;therefore,threematchingpairsarerequiredtofullyrecoverthemotion.Itisnecessarytoselectthethreepointsfromthestationaryback~groundtoassureanaccuratemodelforcameramotion.WeusedMoravecoperator[9]tofinddistinguishedfeaturepointstoensureprecisematch.Moravecoperatorselectspixelswiththemaximumdirectionalgradientinthemin~maxsense.Ifthemovingtargetsconstituteasmallarea(i.e.lessthan50%)oftheimage,thenLMedSalgorithmcanbeappliedtodeterminetheaffinetransformationparametersoftheapparentbackgroundmotionbetweentwoconsecutiveframesaccordingtothefollowingprocedure.SelectNrandomfeaturepointfrompreviousframe,andusethestandardnormalizedcrosscorrelationmethodtolocatethecorrespondingpointsinthecurrentframe.Normalizedcorrelationequationisgivenby:(2)hereandaretheaverageintensitiesofthepixelsinthetworegionsbeingcompared,andthesummationsarecarriedoutoverallpixelswithinsmallwindowscenteredonthefeaturepoints.Thevaluerintheaboveequationmeasuresthesimilaritybetweentworegionsandisbetween1and-1.Sinceitisassumedthatmovingobjectsarelessthan50%ofthewholeimage,thereforemostoftheNpointswillbelongtothestationarybackground.2.SelectMrandomsetsofthreefeaturepoints:(xi,yi,Xi,Yi)fori=1,2,3,fromtheNfeaturepointsobtainedinstep1.(xi,yi)arecoordinatesofthefeaturepointsinthepreviousframe,and(Xi,Yi)aretheircorrespondsincurrentframe.3.Foreachsetcalculatetheaffinetransformationparameters.4.TransformNfeaturepointsinstep1usingMaffinetransformations,obtainedinstep3andcalculatetheMmediansofsquareddifferencesbetweencorrespondingpointsandtransformedpoints.Thenselecttheaffineparametersforwhichthemedianofsquareddifferenceistheminimum.Accordingtotheaboveprocedure,theprobabilitypthatatleastonedatasetinthebackgroundandtheircorrectcorrespondingpointsareobtainedisderivedfromthefollowingequation[7]:(3)where(<0.5)istheratioofthemovingobjectregionstowholeimageandqistheprobabilitythatcorrespondingpointsarecorrectlyfind.In[7]ithasbeenshownthattheabove

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論