2024屆河南省周口市項城市正泰博文學校數(shù)學九年級第一學期期末考試試題含解析_第1頁
2024屆河南省周口市項城市正泰博文學校數(shù)學九年級第一學期期末考試試題含解析_第2頁
2024屆河南省周口市項城市正泰博文學校數(shù)學九年級第一學期期末考試試題含解析_第3頁
2024屆河南省周口市項城市正泰博文學校數(shù)學九年級第一學期期末考試試題含解析_第4頁
2024屆河南省周口市項城市正泰博文學校數(shù)學九年級第一學期期末考試試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆河南省周口市項城市(正泰博文學校數(shù)學九年級第一學期期末考試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,圓錐的底面半徑OB=6cm,高OC=8cm,則這個圓錐的側面積是()A.30 B.30π C.60π D.48π2.如圖,動點A在拋物線y=-x2+2x+3(0≤x≤3)上運動,直線l經過點(0,6),且與y軸垂直,過點A作AC⊥l于點C,以AC為對角線作矩形ABCD,則另一對角線BD的取值范圍正確的是()A.2≤BD≤3 B.3≤BD≤6 C.1≤BD≤6 D.2≤BD≤63.下面四組線段中不能成比例線段的是()A.、、、 B.、、、 C.、、、 D.、、、4.下列說法正確的是()A.對角線相等的平行四邊形是菱形B.方程x2+4x+9=0有兩個不相等的實數(shù)根C.等邊三角形都是相似三角形D.函數(shù)y=,當x>0時,y隨x的增大而增大5.二次函數(shù)的圖象如圖所示,則一次函數(shù)與反比例函數(shù)在同一平面直角坐標系中的大致圖象為()A. B. C. D.6.已知在中,,,那么下列說法中正確的是()A. B. C. D.7.下列事件中,是必然事件的是()A.擲一次骰子,向上一面的點數(shù)是6B.13個同學參加一個聚會,他們中至少有兩個同學的生日在同一個月C.射擊運動員射擊一次,命中靶心D.經過有交通信號燈的路口,遇到紅燈8.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結論:①abc>0;②b<a+c;③4a+2b+c>0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正確的結論有()A.2個 B.3個 C.4個 D.5個9.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應值如下表:x

﹣3

﹣2

﹣1

0

1

y

﹣6

0

4

6

6

給出下列說法:①拋物線與y軸的交點為(0,6);②拋物線的對稱軸在y軸的左側;③拋物線一定經過(3,0)點;④在對稱軸左側y隨x的增大而減增大.從表中可知,其中正確的個數(shù)為()A.4 B.3 C.2 D.110.已知點,,都在反比例函數(shù)的圖像上,則()A. B. C. D.二、填空題(每小題3分,共24分)11.若關于的一元二次方程有兩個相等的實數(shù)根,則的值是__________.12.如圖,△ABC內接于⊙O,若∠A=α,則∠OBC=_____.13.已知線段,點是線段的黃金分割點(),那么線段______.(結果保留根號)14.如圖,已知點A在反比例函數(shù)圖象上,AC⊥y軸于點C,點B在x軸的負半軸上,且△ABC的面積為3,則該反比例函數(shù)的表達式為__.15.計算:__________.16.如圖,在中,,,點在上,且,則______.______.17.如圖,在菱形中,,,點,,分別為線段,,上的任意一點,則的最小值為__________.18.一組數(shù)據(jù)3,2,1,4,的極差為5,則為______.三、解答題(共66分)19.(10分)市射擊隊為從甲、乙兩名運動員中選拔一人參加省比賽,對他們進行了六次測試,測試成績如下表(單位:環(huán)):

第1次

第2次

第3次

第4次

第5次

第6次

10

9

8

8

10

9

10

10

8

10

7

9

(1)根據(jù)表格中的數(shù)據(jù),分別計算出甲、乙兩人的平均成績;(2)分別計算甲、乙六次測試成績的方差;(3)根據(jù)(1)、(2)計算的結果,你認為推薦誰參加省比賽更合適,請說明理由.20.(6分)已知拋物線y=x2+bx﹣3經過點A(1,0),頂點為點M.(1)求拋物線的表達式及頂點M的坐標;(2)求∠OAM的正弦值.21.(6分)如圖,AB是⊙O的直徑,弦DE垂直半徑OA,C為垂足,DE=6,連接DB,,過點E作EM∥BD,交BA的延長線于點M.(1)求的半徑;(2)求證:EM是⊙O的切線;(3)若弦DF與直徑AB相交于點P,當∠APD=45°時,求圖中陰影部分的面積.22.(8分)如圖,在平面直角坐標系中,點A的坐標為(m,m),點B的坐標為(n,﹣n),拋物線經過A、O、B三點,連接OA、OB、AB,線段AB交y軸于點C,已知實數(shù)m、n(m<n)分別是方程x2﹣2x﹣3=0的兩根.(1)求拋物線的解析式;(2)若點P為線段OB上的一個動點(不與點O、B重合),直線PC與拋物線交于D、E兩點(點D在y軸右側),連接OD、BD①當△OPC為等腰三角形時,求點P的坐標;②求△BOD面積的最大值,并寫出此時點D的坐標.23.(8分)在△ABC中,AB=6cm,AC=8cm,BC=10cm,P為邊BC上一動點,PE⊥AB于E,PF⊥AC于F,連接EF,則EF的最小值為多少cm?24.(8分)如圖,已知⊙O經過△ABC的頂點A、B,交邊BC于點D,點A恰為的中點,且BD=8,AC=9,sinC=,求⊙O的半徑.25.(10分)如圖,BD為⊙O的直徑,點A是劣弧BC的中點,AD交BC于點E,連結AB.(1)求證:AB2=AE·AD;(2)若AE=2,ED=4,求圖中陰影的面積.26.(10分)《九章算術》是中國古代第一部數(shù)學專著,是《算經十書》中最重要的一種,成于公元一世紀左右.在其“勾股”章中有這樣一個問題:“今有邑,東西七里,南北九里,各開中門,出東門一十五里有木,問:出南門幾何步而見木?”意思是說:如圖,矩形城池ABCD,東邊城墻AB長9里,南邊城墻AD長7里,東門點E,南門點F分別是AB,AD的中點,EG⊥AB,F(xiàn)H⊥AD.EG=15里,HG經過點A,則FH等于多少里?請你根據(jù)上述題意,求出FH的長度.

參考答案一、選擇題(每小題3分,共30分)1、C【解題分析】試題分析:∵它的底面半徑OB=6cm,高OC=8cm.∴BC==10(cm),∴這個圓錐漏斗的側面積是:πrl=π×6×10=60π(cm2).故選C.考點:圓錐的計算.2、D【分析】根據(jù)題意先利用配方法得到拋物線的頂點坐標為(1,4),再根據(jù)矩形的性質得BD=AC,由于2≤AC≤1,從而進行分析得到BD的取值范圍.【題目詳解】解:∵,∴拋物線開口向下,頂點坐標為(1,4),∵四邊形ABCD為矩形,∴BD=AC,∵直線l經過點(0,1),且與y軸垂直,拋物線y=-x2+2x+3(0≤x≤3),∴2≤AC≤1,∴另一對角線BD的取值范圍為:2≤BD≤1.故選:D.【題目點撥】本題考查矩形的性質與二次函數(shù)圖象上點的坐標特征,注意掌握二次函數(shù)圖象上點的坐標滿足其解析式.3、B【分析】根據(jù)成比例線段的概念,對選項進行一一分析,即可得出答案.【題目詳解】A.2×6=3×4,能成比例;B.4×10≠5×6,不能成比例;C.1×=×,能成比例;D.2×=×,能成比例.故選B.【題目點撥】本題考查了成比例線段的概念.在四條線段中,如果其中兩條線段的比等于另外兩條線段的比,那么這四條線段叫做成比例線段.4、C【分析】根據(jù)相似三角形的判定,菱形的判定方法,一元二次方程根的判別式反比例函數(shù)的性質可得出答案.【題目詳解】解:A.對角線相等的平行四邊形是矩形,故本選項錯誤;B.方程x2+4x+9=0中,△=16﹣36=﹣20<0,所以方程沒有實數(shù)根,故本選項錯誤;C.等邊三角形對應角相等,對應邊成比例,所以是相似三角形,故本選項正確;D.函數(shù)y=,當x>0時,y隨x的增大而減小,故本選項錯誤.故選:C.【題目點撥】本題考查了相似三角形的判定,菱形的判定方法,一元二次方程根的判別式反比例函數(shù)的性質,熟記定理是解題的關鍵.5、B【解題分析】∵二次函數(shù)圖象開口向上,∴a>1,∵對稱軸為直線,∴b<1.∵與y軸的正半軸相交,∴c>1.∴的圖象經過第一、三、四象限;反比例函數(shù)圖象在第一、三象限,只有B選項圖象符合.故選B.6、A【分析】利用同角三角函數(shù)的關系解答.【題目詳解】在Rt△ABC中,∠C=90°,,則cosA=

A、cosB=sinA=,故本選項符合題意.

B、cotA=.故本選項不符合題意.

C、tanA=.故本選項不符合題意.

D、cotB=tanA=.故本選項不符合題意.

故選:A.【題目點撥】此題考查同角三角函數(shù)關系,解題關鍵在于掌握(1)平方關系:sin2A+cos2A=1;(2)正余弦與正切之間的關系(積的關系):一個角的正切值等于這個角的正弦與余弦的比.7、B【分析】事先能肯定它一定會發(fā)生的事件稱為必然事件,即發(fā)生的概率是1的事件.【題目詳解】解:A.擲一次骰子,向上一面的點數(shù)是6,屬于隨機事件;B.13個同學參加一個聚會,他們中至少有兩個同學的生日在同一個月,屬于必然事件;C.射擊運動員射擊一次,命中靶心,屬于隨機事件;D.經過有交通信號燈的路口,遇到紅燈,屬于隨機事件;故選B.【題目點撥】此題主要考查事件發(fā)生的概率,解題的關鍵是熟知必然事件的定義.8、B【分析】①觀察圖象可知a<0,b>0,c>0,由此即可判定①;②當x=﹣1時,y=a﹣b+c由此可判定②;③由對稱知,當x=2時,函數(shù)值大于0,即y=4a+2b+c>0,由此可判定③;④當x=3時函數(shù)值小于0,即y=9a+3b+c<0,且x=﹣=1,可得a=﹣,代入y=9a+3b+c<0即可判定④;⑤當x=1時,y的值最大.此時,y=a+b+c,當x=n時,y=an2+bn+c,由此即可判定⑤.【題目詳解】①由圖象可知:a<0,b>0,c>0,abc<0,故此選項錯誤;②當x=﹣1時,y=a﹣b+c<0,即b>a+c,故此選項錯誤;③由對稱知,當x=2時,函數(shù)值大于0,即y=4a+2b+c>0,故此選項正確;④當x=3時函數(shù)值小于0,y=9a+3b+c<0,且x=﹣=1即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此選項正確;⑤當x=1時,y的值最大.此時,y=a+b+c,而當x=n時,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此選項正確.∴③④⑤正確.故選B.【題目點撥】本題主要考查了拋物線的圖象與二次函數(shù)系數(shù)之間的關系,熟知拋物線的圖象與二次函數(shù)系數(shù)之間的關系是解決本題的關鍵.9、B【解題分析】試題分析:當x=0時y=6,x=1時y=6,x=﹣2時y=0,可得,解得,∴拋物線解析式為y=﹣x2+x+6=﹣(x﹣)2+,當x=0時y=6,∴拋物線與y軸的交點為(0,6),故①正確;拋物線的對稱軸為x=,故②不正確;當x=3時,y=﹣9+3+6=0,∴拋物線過點(3,0),故③正確;∵拋物線開口向下,∴在對稱軸左側y隨x的增大而增大,故④正確;綜上可知正確的個數(shù)為3個,故選B.考點:二次函數(shù)的性質.10、D【解題分析】根據(jù)反比例函數(shù)的解析式知圖像在二、四象限,y值隨著x的增大而減小,故可作出判斷【題目詳解】∵k0,∴反比例函數(shù)在二、四象限,y值隨著x的增大而減小,又∵,在反比例函數(shù)的圖像上,,2∴0,點在第二象限,故,∴,故選D.【題目點撥】此題主要考察反比例函數(shù)的性質,找到點在第二象限是此題的關鍵.二、填空題(每小題3分,共24分)11、1【分析】因為關于的一元二次方程有兩個相等的實數(shù)根,故,代入求解即可.【題目詳解】根據(jù)題意可得:解得:m=1故答案為:1【題目點撥】本題考查的是一元二次方程的根的判別式,掌握根的判別式與方程的根的關系是關鍵.12、90°﹣α.【分析】首先連接OC,由圓周角定理,可求得∠BOC的度數(shù),又由等腰三角形的性質,即可求得∠OBC的度數(shù).【題目詳解】連接OC.∵∠BOC=2∠BAC,∠BAC=α,∴∠BOC=2α.∵OB=OC,∴∠OBC故答案為:.【題目點撥】此題考查了圓周角定理與等腰三角形的性質.此題比較簡單,注意掌握輔助線的作法,注意數(shù)形結合思想的應用.13、【分析】根據(jù)黃金比值為計算即可.【題目詳解】解:∵點P是線段AB的黃金分割點(AP>BP)∴故答案為:.【題目點撥】本題考查的知識點是黃金分割,熟記黃金分割點的比值是解題的關鍵.14、y=﹣【解題分析】根據(jù)同底等高的兩個三角形面積相等,可得△AOC的面積=△ABC的面積=3,再根據(jù)反比例函數(shù)中k的幾何意義,即可確定k的值,進而得出反比例函數(shù)的解析式.【題目詳解】解:如圖,連接AO,設反比例函數(shù)的解析式為y=.∵AC⊥y軸于點C,∴AC∥BO,∴△AOC的面積=△ABC的面積=3,又∵△AOC的面積=|k|,∴|k|=3,∴k=±2;又∵反比例函數(shù)的圖象的一支位于第二象限,∴k<1.∴k=﹣2.∴這個反比例函數(shù)的解析式為y=﹣.故答案為y=﹣.【題目點撥】本題考查待定系數(shù)法求反比例函數(shù)的解析式和反比例函數(shù)中k的幾何意義.在反比例函數(shù)的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構成的三角形的面積是|k|,且保持不變.15、【分析】先計算根號、負指數(shù)和sin30°,再運用實數(shù)的加減法運算法則計算即可得出答案.【題目詳解】原式=,故答案為.【題目點撥】本題考查的是實數(shù)的運算,中考必考題型,需要熟練掌握實數(shù)的運算法則.16、【分析】在Rt△ABC中,根據(jù),可求得AC的長;在Rt△ACD中,設CD=x,則AD=BD=8-x,根據(jù)勾股定理列方程求出x值,從而求得結果.【題目詳解】解:在Rt△ABC中,∵,∴AC=BC=1.設CD=x,則BD=8-x=AD,在Rt△ACD中,由勾股定理得,x2+12=(8-x)2,解得x=2.∴CD=2,AD=5,∴.故答案為:1;.【題目點撥】本題考查解直角三角形,掌握相關概念是解題的關鍵.17、【分析】根據(jù)菱形的對稱性,在AB上找到點P關于BD的對稱點,過點作Q⊥CD于Q,交BD于點K,連接PK,過點A作AE⊥CD于E,根據(jù)垂線段最短和平行線之間的距離處處相等,可得此時最小,且最小值為的長,,然后利用銳角三角函數(shù)求AE即可.【題目詳解】解:根據(jù)菱形的對稱性,在AB上找到點P關于BD的對稱點,過點作Q⊥CD于Q,交BD于點K,連接PK,過點A作AE⊥CD于E根據(jù)對稱性可知:PK=K,∴此時=,根據(jù)垂線段最短和平行線之間的距離處處相等,∴此時最小,且最小值為的長,∵在菱形中,,∴,∠ADE=180°-∠A=60°在Rt△ADE中,AE=AD·sin∠ADE=∴即的最小值為故答案為.【題目點撥】此題考查的是菱形的性質、求兩線段之和的最值問題和銳角三角函數(shù),掌握菱形的性質、垂線段最短、平行線之間的距離處處相等和用銳角三角函數(shù)解直角三角形是解決此題的關鍵.18、-1或1【分析】由題意根據(jù)極差的公式即極差=最大值-最小值.可能是最大值,也可能是最小值,分兩種情況討論.【題目詳解】解:當x是最大值,則x-(1)=5,所以x=1;當x是最小值,則4-x=5,所以x=-1;故答案為-1或1.【題目點撥】本題考查極差的定義,極差反映了一組數(shù)據(jù)變化范圍的大小,求極差的方法是用一組數(shù)據(jù)中的最大值減去最小值,同時注意分類的思想的運用.三、解答題(共66分)19、(1)9,9(2)23,3【題目詳解】(1)x甲==(10+9+8+8+10+9)÷6x乙=(10+10+8+10+7+9)÷6=(2)S(3)∵x甲∴推薦甲參加省比賽更合適【題目點撥】方差的基本知識是判斷乘積等一些頻率圖形分布規(guī)律的??键c20、(1)M的坐標為(﹣1,﹣4);(2)25【解題分析】(1)把A坐標代入拋物線解析式求出b的值,確定出拋物線表達式,并求出頂點坐標即可;(2)根據(jù)(1)確定出拋物線對稱軸,求出拋物線與x軸的交點B坐標,根據(jù)題意得到三角形AMB為直角三角形,由MB與AB的長,利用勾股定理求出AM的長,再利用銳角三角函數(shù)定義求出所求即可.【題目詳解】解:(1)由題意,得1+b﹣3=0,解這個方程,得,b=2,所以,這個拋物線的表達式是y=x2+2x﹣3,所以y=(x+1)2﹣4,則頂點M的坐標為(﹣1,﹣4);(2)由(1)得:這個拋物線的對稱軸是直線x=﹣1,設直線x=-1與x軸的交點為點B,則點B的坐標為(﹣1,0),且∠MBA=90°,在Rt△ABM中,MB=4,AB=2,由勾股定理得:AM2=MB2+AB2=16+4=20,即AM=25,所以sin∠OAM=BMAM=2【題目點撥】此題考查了待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的性質,二次函數(shù)圖象上點的坐標特征,以及解直角三角形,熟練掌握待定系數(shù)法是解本題的關鍵.21、⑴OE=2;⑵見詳解⑶【分析】(1)連結OE,根據(jù)垂徑定理可以得到,得到∠AOE=60o,OC=OE,根據(jù)勾股定理即可求出.(2)只要證明出∠OEM=90°即可,由(1)得到∠AOE=60o,根據(jù)EM∥BD,∠B=∠M=30°,即可求出.(3)連接OF,根據(jù)∠APD=45°,可以求出∠EDF=45o,根據(jù)圓心角為2倍的圓周角,得到∠BOE,用扇形OEF面積減去三角形OEF面積即可.【題目詳解】(1)連結OE∵DE垂直O(jiān)A,∠B=30°∴CE=DE=3,∴∠AOE=2∠B=60o,∴∠CEO=30°,OC=OE由勾股定理得OE=(2)∵EM∥BD,∴∠M=∠B=30o,∠M+∠AOE=90o∴∠OEM=90o,即OE⊥ME,∴EM是⊙O的切線(3)再連結OF,當∠APD=45o時,∠EDF=45o,∴∠EOF=90oS陰影==【題目點撥】本題主要考查了圓的切線判定、垂徑定理、平行線的性質定理以及扇形面積的簡單計算,熟記概念是解題的關鍵.22、(1)拋物線的解析式為;(2)①P點坐標為P1()或P2()或P2();②D().【分析】(1)首先解方程得出A,B兩點的坐標,從而利用待定系數(shù)法求出二次函數(shù)解析式即可.(2)①首先求出AB的直線解析式,以及BO解析式,再利用等腰三角形的性質得出當OC=OP時,當OP=PC時,點P在線段OC的中垂線上,當OC=PC時分別求出x的值即可.②利用S△BOD=S△ODQ+S△BDQ得出關于x的二次函數(shù),從而得出最值即可.【題目詳解】解:(1)解方程x2﹣2x﹣2=0,得x1=2,x2=﹣1.∵m<n,∴m=﹣1,n=2.∴A(﹣1,﹣1),B(2,﹣2).∵拋物線過原點,設拋物線的解析式為y=ax2+bx.∴,解得:.∴拋物線的解析式為.(2)①設直線AB的解析式為y=kx+b.∴,解得:.∴直線AB的解析式為.∴C點坐標為(0,).∵直線OB過點O(0,0),B(2,﹣2),∴直線OB的解析式為y=﹣x.∵△OPC為等腰三角形,∴OC=OP或OP=PC或OC=PC.設P(x,﹣x).(i)當OC=OP時,,解得(舍去).∴P1().(ii)當OP=PC時,點P在線段OC的中垂線上,∴P2().(iii)當OC=PC時,由,解得(舍去).∴P2().綜上所述,P點坐標為P1()或P2()或P2().②過點D作DG⊥x軸,垂足為G,交OB于Q,過B作BH⊥x軸,垂足為H.設Q(x,﹣x),D(x,).S△BOD=S△ODQ+S△BDQ=DQ?OG+DQ?GH=DQ(OG+GH)==.∵0<x<2,∴當時,S取得最大值為,此時D().【題目點撥】本題考查的是二次函數(shù)綜合運用,涉及到一次函數(shù)、解一元二次方程、圖形的面積計算等,其中(2)要注意分類求解,避免遺漏.23、4.8cm【分析】連接AP,先利用勾股定理的逆定理證明△ABC為直角三角形,∠A=90°,可知四邊形AEPF為矩形,則AP=EF,當AP的值最小時,EF的值最小,利用垂線段最短得到AP⊥BC時,AP的值最小,然后利用面積法計算此時AP的長即可.【題目詳解】解:連接AP,∵AB=6cm,AC=8cm,BC=10cm,∴AB2+AC2=BC2,∴△ABC是直角三角形,∴∠A=90°,又∵PE⊥AB,PF⊥AC,∴四邊形AEPF是矩形,∴AP=EF,當AP⊥BC時,EF的值最小,∵,∴.解得AP=4.8cm.∴EF的最小值是4.8cm.【題目點撥】此題考查了直角三角形的判定及性質、矩形的判定與性質.關于矩形,應從平行四邊形的內角的變化上認識其特殊性:一個內角是直角的平行四邊形,進一步研究其特有的性質:是軸對稱圖形、內角都是直角、對角線相等.同時平行四邊形的性質矩形也都具有.利用矩形對角線線段對線段進行轉換求解是解題關鍵.24、⊙O的半徑為.【解題分析】如圖,連接OA.交BC于H.首先證明

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論