2024屆浙江省寧波市海曙區(qū)數(shù)學九上期末教學質(zhì)量檢測試題含解析_第1頁
2024屆浙江省寧波市海曙區(qū)數(shù)學九上期末教學質(zhì)量檢測試題含解析_第2頁
2024屆浙江省寧波市海曙區(qū)數(shù)學九上期末教學質(zhì)量檢測試題含解析_第3頁
2024屆浙江省寧波市海曙區(qū)數(shù)學九上期末教學質(zhì)量檢測試題含解析_第4頁
2024屆浙江省寧波市海曙區(qū)數(shù)學九上期末教學質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆浙江省寧波市海曙區(qū)數(shù)學九上期末教學質(zhì)量檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條邊DF=50cm,EF=30cm,測得邊DF離地面的高度AC=1.5m,CD=20m,則樹高AB為()A.12m B.13.5m C.15m D.16.5m2.拋物線y=(x-4)(x+2)的對稱軸方程為()A.直線x=-2 B.直線x=1 C.直線x=-4 D.直線x=43.用10長的鋁材制成一個矩形窗框,使它的面積為6.若設它的一條邊長為,則根據(jù)題意可列出關于的方程為()A. B. C. D.4.下列圖案中,既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.5.如圖,中,點、分別在、上,,,則與四邊形的面積的比為()A. B. C. D.6.若要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.先向右平移1個單位長度,再向上平移2個單位長度B.先向左平移1個單位長度,再向上平移2個單位長度C.先向左平移1個單位長度,再向下平移2個單位長度D.先向右平移1個單位長度,再向下平移2個單位長度7.一個正五邊形和一個正六邊形按如圖方式擺放,它們都有一邊在直線l上,且有一個公共頂點,則的度數(shù)是A. B. C. D.8.如圖,在矩形中,.將向內(nèi)翻折,點落在上,記為,折痕為.若將沿向內(nèi)翻折,點恰好落在上,記為,則的長為()A. B. C. D.9.若,設,,,則、、的大小順序為()A. B. C. D.10.若反比例函數(shù)的圖象過點A(5,3),則下面各點也在該反比例函數(shù)圖象上的是()A.(5,-3) B.(-5,3) C.(2,6) D.(3,5)11.如圖,在Rt△ABC中,∠C=90°,∠B=30°,BC="4"cm,以點C為圓心,以2cm的長為半徑作圓,則⊙C與AB的位置關系是().A.相離 B.相切 C.相交 D.相切或相交12.如圖,⊙是的外接圓,已知平分交⊙于點,交于點,若,,則的長為()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,∠XOY=45°,一把直角三角尺△ABC的兩個頂點A、B分別在OX,OY上移動,其中AB=10,那么點O到頂點A的距離的最大值為_____.14.將“定理”的英文單詞theorem中的7個字母分別寫在7張相同的卡片上,字面朝下隨意放在桌子上,任取一張,那么取到字母e的概率為.15.形狀與拋物線相同,對稱軸是直線,且過點的拋物線的解析式是________.16.一組數(shù)據(jù):﹣1,3,2,x,5,它有唯一的眾數(shù)是3,則這組數(shù)據(jù)的中位數(shù)是__.17.已知矩形ABCD,AB=3,AD=5,以點A為圓心,4為半徑作圓,則點C與圓A的位置關系為__________.18.x臺拖拉機,每天工作x小時,x天耕地x畝,則y臺拖拉機,每天工作y小時,y天耕____畝.三、解答題(共78分)19.(8分)如圖,在中,于,,,,分別是,的中點.(1)求證:,;(2)連接,若,求的長.20.(8分)如圖,AB是⊙O的直徑,DO⊥AB于點O,連接DA交⊙O于點C,過點C作⊙O的切線交DO于點E,連接BC交DO于點F.(1)求證:CE=EF;(2)連接AF并延長,交⊙O于點G.填空:①當∠D的度數(shù)為時,四邊形ECFG為菱形;②當∠D的度數(shù)為時,四邊形ECOG為正方形.21.(8分)如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF,連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C(1)請判斷:FG與CE的數(shù)量關系是__________,位置關系是__________;(2)如圖2,若點E、F分別是CB、BA延長線上的點,其它條件不變,(1)中結(jié)論是否仍然成立?請出判斷判斷并給予證明.22.(10分)如圖,有一路燈桿AB(底部B不能直接到達),在燈光下,小明在點D處測得自己的影長DF=3m,沿BD方向到達點F處再測得自己得影長FG=4m,如果小明的身高為1.6m,求路燈桿AB的高度.23.(10分)已知直線y=x+3交x軸于點A,交y軸于點B,拋物線y=﹣x2+bx+c經(jīng)過點A,B.(1)求拋物線解析式;(2)點C(m,0)在線段OA上(點C不與A,O點重合),CD⊥OA交AB于點D,交拋物線于點E,若DE=AD,求m的值;(3)點M在拋物線上,點N在拋物線的對稱軸上,在(2)的條件下,是否存在以點D,B,M,N為頂點的四邊形為平行四邊形?若存在,請求出點N的坐標;若不存在,請說明理由.24.(10分)已知:平行四邊形ABCD的兩邊AB,AD的長是關于x的方程x2﹣mx+﹣=0的兩個實數(shù)根.(1)m為何值時,四邊形ABCD是菱形?求出這時菱形的邊長;(2)若AB的長為2,那么?ABCD的周長是多少?25.(12分)宿遷市政府為了方便市民綠色出行,推出了共享單車服務.圖①是某品牌共享單車放在水平地面上的實物圖,圖②是其示意圖,其中、都與地面l平行,車輪半徑為,,,坐墊與點的距離為.(1)求坐墊到地面的距離;(2)根據(jù)經(jīng)驗,當坐墊到的距離調(diào)整為人體腿長的0.8時,坐騎比較舒適.小明的腿長約為,現(xiàn)將坐墊調(diào)整至坐騎舒適高度位置,求的長.(結(jié)果精確到,參考數(shù)據(jù):,,)26.如圖,已知,點、坐標分別為、.(1)把繞原點順時針旋轉(zhuǎn)得,畫出旋轉(zhuǎn)后的;(2)在(1)的條件下,求點旋轉(zhuǎn)到點經(jīng)過的路徑的長.

參考答案一、選擇題(每題4分,共48分)1、D【解題分析】利用直角三角形DEF和直角三角形BCD相似求得BC的長后加上小明同學的身高即可求得樹高AB.【題目詳解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案為16.5m.【題目點撥】本題考查了相似三角形的應用,解題的關鍵是從實際問題中整理出相似三角形的模型.2、B【解題分析】把拋物線解析式整理成頂點式解析式,然后寫出對稱軸方程即可.【題目詳解】解:y=(x+2)(x-4),=x2-2x-8,=x2-2x+1-9,=(x-1)2-9,∴對稱軸方程為x=1.故選:B.【題目點撥】本題考查了二次函數(shù)的性質(zhì),是基礎題,把拋物線解析式整理成頂點式解析式是解題的關鍵.3、A【分析】一邊長為xm,則另外一邊長為(5﹣x)m,根據(jù)它的面積為1m2,即可列出方程式.【題目詳解】一邊長為xm,則另外一邊長為(5﹣x)m,由題意得:x(5﹣x)=1.故選A.【題目點撥】本題考查了由實際問題抽象出一元二次方程,難度適中,解答本題的關鍵讀懂題意列出方程式.4、B【解題分析】根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【題目詳解】A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;

B、是軸對稱圖形,也是中心對稱圖形,故此選項正確;

C、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;

D、不是軸對稱圖形,是中心對稱圖形,故此選項錯誤.

故選B.【題目點撥】考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.5、C【分析】因為DE∥BC,所以可得△ADE∽△ABC,根據(jù)相似三角形的面積比等于相似比的平方解答即可.【題目詳解】解:∵DE∥BC,

∴△ADE∽△ABC,

∴,

∵AD:DB=1:2,

∴AD:AB=1:3,

∴,

∴△ADE的面積與四邊形DBCE的面積之比=1:8,

故選:C.【題目點撥】本題考查了相似三角形的判定與性質(zhì),熟記相似三角形面積的比等于相似比的平方是解題的關鍵.6、A【分析】找出兩拋物線的頂點坐標,由a值不變即可找出結(jié)論.【題目詳解】∵拋物線y=(x-1)1+1的頂點坐標為(1,1),拋物線y=x1的頂點坐標為(0,0),∴將拋物線y=x1先向右平移1個單位長度,再向上平移1個單位長度即可得出拋物線y=(x-1)1+1.故選:A.【題目點撥】本題考查了二次函數(shù)圖象與幾何變換,通過平移頂點找出結(jié)論是解題的關鍵.7、B【分析】利用正多邊形的性質(zhì)求出∠AOE,∠BOF,∠EOF即可解決問題;【題目詳解】由題意:∠AOE=108°,∠BOF=120°,∠OEF=72°,∠OFE=60°,∴∠EOF=180°?72°?60°=48°,∴∠AOB=360°?108°?48°?120°=84°,故選:B.【題目點撥】本題考查正多邊形的性質(zhì)、三角形內(nèi)角和定理,解題關鍵在于掌握各性質(zhì)定義.8、B【分析】首先根據(jù)矩形和翻折的性質(zhì)得出△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,進而得出∠AED=∠A'ED=∠A'EB=60°,∠ADE=∠A'DE=∠A'DC=30°,判定△DB'A'≌△DCA',DC=DB',得出AE,設AB=DC=x,利用勾股定理構(gòu)建方程,即可得解.【題目詳解】∵四邊形ABCD為矩形,∴∠ADC=∠C=∠B=90°,AB=DC,由翻折知,△AED≌△A'ED,△A'BE≌△A'B'E,∠A'B'E=∠B=∠A'B'D=90°,∴∠AED=∠A'ED,∠A'EB=∠A'EB',BE=B'E,∴∠AED=∠A'ED=∠A'EB=×180°=60°,∴∠ADE=90°﹣∠AED=30°,∠A'DE=90°﹣∠A'EB=30°,∴∠ADE=∠A'DE=∠A'DC=30°,又∵∠C=∠A'B'D=90°,DA'=DA',∴△DB'A'≌△DCA'(AAS),∴DC=DB',在Rt△AED中,∠ADE=30°,AD=2,∴AE=,設AB=DC=x,則BE=B'E=x﹣∵AE2+AD2=DE2,∴()2+22=(x+x﹣)2,解得,x1=(負值舍去),x2=,故答案為B.【題目點撥】本題考查了矩形的性質(zhì),軸對稱的性質(zhì)等,解題關鍵是通過軸對稱的性質(zhì)證明∠AED=∠A'ED=∠A'EB=60°.9、B【分析】根據(jù),設x=1a,y=7a,z=5a,進而代入A,B,C分別求出即可.【題目詳解】解:∵,設x=1a,y=7a,z=5a,

∴=,

==1,

==1.

∴A<B<C.

故選:B.【題目點撥】本題考查了比例的性質(zhì),根據(jù)比例式用同一個未知數(shù)得出x,y,z的值進而求出是解題的關鍵.10、D【解題分析】先利用待定系數(shù)法求出反比例函數(shù)的解析式,然后將各選項的點代入驗證即可.【題目詳解】將點代入得:,解得則反比例函數(shù)為:A、令,代入得,此項不符題意B、令,代入得,此項不符題意C、令,代入得,此項不符題意D、令,代入得,此項符合題意故選:D.【題目點撥】本題考查了待定系數(shù)法求函數(shù)解析式、以及確定某點是否在函數(shù)上,依據(jù)題意求出反比例函數(shù)解析式是解題關鍵.11、B【分析】作CD⊥AB于點D.根據(jù)三角函數(shù)求CD的長,與圓的半徑比較,作出判斷.【題目詳解】解:作CD⊥AB于點D.

∵∠B=30°,BC=4cm,∴即CD等于圓的半徑.

∵CD⊥AB,

∴AB與⊙C相切.

故選:B.12、A【分析】先根據(jù)角平分線的定義、圓周角定理可得,再根據(jù)相似三角形的判定定理得出,然后根據(jù)相似三角形的性質(zhì)即可得.【題目詳解】平分弧BD與弧CD相等又,即解得故選:A.【題目點撥】本題考查了角平分線的定義、圓周角定理、相似三角形的判定定理與性質(zhì),利用圓周角定理找到兩個相似三角形是解題關鍵.二、填空題(每題4分,共24分)13、10【分析】當∠ABO=90°時,點O到頂點A的距離的最大,則△ABC是等腰直角三角形,據(jù)此即可求解.【題目詳解】解:∵∴當∠ABO=90°時,點O到頂點A的距離最大.

則OA=AB=10.

故答案是:10.【題目點撥】本題主要考查了等腰直角三角形的性質(zhì),正確確定點O到頂點A的距離的最大的條件是解題關鍵.14、【解題分析】試題分析:根據(jù)概率的求法,找準兩點:①全部等可能情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.因此,∵theorem中的7個字母中有2個字母e,∴任取一張,那么取到字母e的概率為.15、或.【分析】先從已知入手:由與拋物線形狀相同則相同,且經(jīng)過點,即把代入得,再根據(jù)對稱軸為可求出,即可寫出二次函數(shù)的解析式.【題目詳解】解:設所求的二次函數(shù)的解析式為:,與拋物線形狀相同,,,又∵圖象過點,∴,∵對稱軸是直線,∴,∴當時,,當時,,所求的二次函數(shù)的解析式為:或.【題目點撥】本題考查了利用待定系數(shù)法求二次函數(shù)的解析式和二次函數(shù)的系數(shù)和圖象之間的關系.解答時注意拋物線形狀相同時要分兩種情況:①開口向下,②開口向上;即相等.16、1【解題分析】先根據(jù)數(shù)據(jù)的眾數(shù)確定出x的值,即可得出結(jié)論.【題目詳解】∵一組數(shù)據(jù):﹣1,1,2,x,5,它有唯一的眾數(shù)是1,∴x=1,∴此組數(shù)據(jù)為﹣1,2,1,1,5,∴這組數(shù)據(jù)的中位數(shù)為1.故答案為1.【題目點撥】本題考查了數(shù)據(jù)的中位數(shù),眾數(shù)的確定,掌握中位數(shù)和眾數(shù)的確定方法是解答本題的關鍵.17、點C在圓外【分析】由r和CA,AB、DA的大小關系即可判斷各點與⊙A的位置關系.【題目詳解】解:∵AB=3厘米,AD=5厘米,∴AC=厘米,∵半徑為4厘米,∴點C在圓A外【題目點撥】本題考查了對點與圓的位置關系的判斷.關鍵要記住若半徑為r,點到圓心的距離為d,則有:當d>r時,點在圓外;當d=r時,點在圓上,當d<r時,點在圓內(nèi).18、【分析】先求出一臺拖拉機1小時的工作效率,然后求y臺拖拉機在y天,每天工作y小時的工作量.【題目詳解】一臺拖拉機1小時的工作效率為:∴y臺拖拉機,y天,每天y小時的工作量=故答案為:【題目點撥】本題考查工程問題,解題關鍵是求解出一臺拖拉機1小時的工作效率.三、解答題(共78分)19、(1)證明見解析;(2)EF=5.【解題分析】試題分析:(1)證明△BDG≌△ADC,根據(jù)全等三角形的性質(zhì)、直角三角形的性質(zhì)證明;(2)根據(jù)直角三角形的性質(zhì)分別求出DE、DF,根據(jù)勾股定理計算即可.試題解析:(1)∵AD⊥BC,∴∠ADB=∠ADC=90°,在△BDG和△ADC中,,∴△BDG≌△ADC,∴BG=AC,∠BGD=∠C,∵∠ADB=∠ADC=90°,E,F(xiàn)分別是BG,AC的中點,∴DE=BG=EG,DF=AC=AF,∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,∴∠EDG+∠FDA=90°,∴DE⊥DF;(2)∵AC=10,∴DE=DF=5,由勾股定理得,EF==5.20、(1)證明見解析;(2)①30°;②22.5°.【解題分析】分析:(1)連接OC,如圖,利用切線的性質(zhì)得∠1+∠4=90°,再利用等腰三角形和互余證明∠1=∠2,然后根據(jù)等腰三角形的判定定理得到結(jié)論;(2)①當∠D=30°時,∠DAO=60°,證明△CEF和△FEG都為等邊三角形,從而得到EF=FG=GE=CE=CF,則可判斷四邊形ECFG為菱形;②當∠D=22.5°時,∠DAO=67.5°,利用三角形內(nèi)角和計算出∠COE=45°,利用對稱得∠EOG=45°,則∠COG=90°,接著證明△OEC≌△OEG得到∠OEG=∠OCE=90°,從而證明四邊形ECOG為矩形,然后進一步證明四邊形ECOG為正方形.詳解:(1)證明:連接OC,如圖,.∵CE為切線,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①當∠D=30°時,∠DAO=60°,而AB為直徑,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF為等邊三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用對稱得FG=FC,∵FG=EF,∴△FEG為等邊三角形,∴EG=FG,∴EF=FG=GE=CE,∴四邊形ECFG為菱形;②當∠D=22.5°時,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°-67.5°-67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用對稱得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四邊形ECOG為矩形,而OC=OG,∴四邊形ECOG為正方形.故答案為30°,22.5°.點睛:本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關系.也考查了菱形和正方形的判定.21、(1)FG=CE,F(xiàn)G∥CE;(2)成立,理由見解析.【解題分析】(1)結(jié)論:FG=CE,F(xiàn)G∥CE,如圖1中,設DE與CF交于點M,首先證明△CBF≌△DCE,推出DE⊥CF,再證明四邊形EGFC是平行四邊形即可;(2)結(jié)論仍然成立,如圖2中,設DE與CF交于點M,首先證明△CBF≌△DCE,推出DE⊥CF,再證明四邊形EGFC是平行四邊形即可.【題目詳解】(1)結(jié)論:FG=CE,F(xiàn)G∥CE.理由:如圖1中,設DE與CF交于點M,∵四邊形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四邊形EGFC是平行四邊形.∴GF=EC,∴GF=EC,GF∥EC.故答案為FG=CE,F(xiàn)G∥CE;(2)結(jié)論仍然成立.理由:如圖2中,設DE與CF交于點M,∵四邊形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四邊形EGFC是平行四邊形.∴GF=EC,∴GF=EC,GF∥EC.【題目點撥】本題三角形與四邊形綜合問題,涉及全等三角形的判定與性質(zhì),正方形的性質(zhì),平行四邊形的判定與性質(zhì),熟練掌握全等三角形的性質(zhì)是解題的關鍵.22、6.4m【分析】由CD∥EF∥AB得可以得到△CDF∽△ABF,△ABG∽△EFG,故,,證,進一步得,求出BD,再得;【題目詳解】解:∵CD∥EF∥AB,∴可以得到△CDF∽△ABF,△ABG∽△EFG,∴,,又∵CD=EF,∴,∵DF=3,F(xiàn)G=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴∴BD=9,BF=9+3=12∴解得,AB=6.4m因此,路燈桿AB的高度6.4m.【題目點撥】考核知識點:相似三角形的判定和性質(zhì).理解相似三角形判定是關鍵.23、(1)y=﹣x2﹣2x+3;(2)m=﹣2;(3)存在,點N的坐標為(﹣1,﹣2)或(﹣1,0),理由見解析【分析】(1)先確定出點A,B坐標,再用待定系數(shù)法即可得出結(jié)論;(2)先表示出DE,再利用勾股定理表示出AD,建立方程即可得出結(jié)論;(3)分兩種情況:①以BD為一邊,判斷出△EDB≌△GNM,即可得出結(jié)論.②以BD為對角線,利用中點坐標公式即可得出結(jié)論.【題目詳解】(1)當x=0時,y=3,∴B(0,3),當y=0時,x+3=0,x=﹣3,∴A(﹣3,0),把A(﹣3,0),B(0,3)代入拋物線y=﹣x2+bx+c中得:,解得:,∴拋物線的解析式為:y=﹣x2﹣2x+3,(2)∵CD⊥OA,C(m,0),∴D(m,m+3),E(m,﹣m2﹣2m+3),∴DE=(﹣m2﹣2m+3)﹣(m+3)=﹣m2﹣3m,∵AC=m+3,CD=m+3,由勾股定理得:AD=(m+3),∵DE=AD,∴﹣m2﹣3m=2(m+3),∴m1=﹣3(舍),m2=﹣2;(3)存在,分兩種情況:①以BD為一邊,如圖1,設對稱軸與x軸交于點G,∵C(﹣2,0),∴D(﹣2,1),E(﹣2,3),∴E與B關于對稱軸對稱,∴BE∥x軸,∵四邊形DNMB是平行四邊形,∴BD=MN,BD∥MN,∵∠DEB=∠NGM=90°,∠EDB=∠GNM,∴△EDB≌△GNM,∴NG=ED=2,∴N(﹣1,﹣2);②當BD為對角線時,如圖2,此時四邊形BMDN是平行四邊形,設M(n,﹣n2﹣2n+3),N(﹣1,h

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論