Sensitivity Analysis of Enumerated Trees of Increasing Boolean 枚舉樹增加布爾的敏感性分析_第1頁
Sensitivity Analysis of Enumerated Trees of Increasing Boolean 枚舉樹增加布爾的敏感性分析_第2頁
Sensitivity Analysis of Enumerated Trees of Increasing Boolean 枚舉樹增加布爾的敏感性分析_第3頁
Sensitivity Analysis of Enumerated Trees of Increasing Boolean 枚舉樹增加布爾的敏感性分析_第4頁
Sensitivity Analysis of Enumerated Trees of Increasing Boolean 枚舉樹增加布爾的敏感性分析_第5頁
已閱讀5頁,還剩51頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

SensitivityAnalysisofEnumeratedTreesofIncreasingBooleanExpressions

SaketAnand,DavidMadigan,RichardMammone,FredRobertsEnumerationandSelectionofOptimumDecisionTreeABC0101AsetofdecisiontreesisconstructedforeachcompleteandmonotonicbooleanfunctionwhereinputsrepresenttestsperformedbyeachsensorABCY00000010010001101000101111011111Y=f(A,B,C)wherefiscompleteandmonotonicThecostofeachtreeisevaluatedandtheoptimumtreeselected.CA0A101B1EnumerationandSelectionofOptimumDecisionTreeThedecisiontreesareconstructedusing4sensorsForthreesensors,thereare114monotonicandcompletebooleanexpressions.Thesecanbeimplementedusing11808distincttrees.Thetreesareevaluatedandrankedusingthecostfunction1.Thetreewiththelowestcostisselectedastheoptimumdecisiontree.1Stroud,P.D.andSaegerKJ.,“EnumerationofIncreasingBooleanExpressionsandAlternativeDigraphImplementationsforDiagnosticApplications〞,ProceedingsVol.IV,Computer,CommunicationandControlTechnologiesCostFunctionusedforevaluatingthedecisiontrees.CTot=

CFalsePositive*PFalsePositive+CFalseNegative*PFalseNegative

+CfixedTheErrorProbabilityoftheentiretreeiscomputedfromtheerrorprobabilitiesoftheindividualsensors.where,

CFalsePositiveisthecostoffalsepositive(TypeIerror)

CFalseNegativeisthecostoffalsenegative(TypeIIerror)

PFalsePositiveistheprobabilityofafalsepositiveoccurring

PFalseNegative

istheprobabilityofafalsenegativeoccurring

Cfixedisthefixedcostofutilizationofthetree.ProbabilityofErrorforIndividualSensorsForithsensor,thetype1(P(Yi=1|X=0))andtype2(P(Yi=0|X=1))errorsaremodeledusingGaussiandistributions.StateofnatureX=0representsabsenceofabomb.StateofnatureX=1representspresenceofabomb.Yirepresentstheoutcomeofsensori.Itischaracterizedby:Ki,discriminationcoefficientTi,decisionthresholdΣi,varianceofthedistributionsKiP(Yi|X=1)P(Yi|X=0)TiCharacteristicsofatypicalsensorReceiverOperatingCharacteristic(ROC)CurveTheROCcurveistheplotoftheProbabilityofcorrectdetection(PD)vs.theProbabilityoffalsepositive(PF).TheROCcurveisusedtoselectanoperatingpoint,whichprovidesthetradeoffbetweenthePDandPFEachsensorhasaROCcurveandthecombinationofthesensorsintoadecisiontreehasacompositeROCcurve.TheparameterwhichisvariedtogetdifferentoperatingpointsontheROCcurveisthesensorThresholdandacombinationofThresholdsforthedecisiontree.EqualErrorRate(EER)istheoperatingpointontheROCcurvewhere,

PF

=

1-PDP(Yi|X=1)P(Yi|X=0)TiKiPDPFOperatingPoint101EERStroud-SaegerExperimentsStroud-SaegerrankedalltreesformedfromfourgivensensorsA,B,CandDaccordingtoincreasingtreecosts.Thecostfunctionusedwasasshowninearlierslides.Valuesusedintheirexperiment:CA=.25;KA=4.37;ΣA=1;CB=.25;KB=1.53;ΣB=1;CC=10;KC=2.9;ΣC=1;CD=30;KD=4.6;ΣD=1;whereCiistheindividualcostofutilizationofsensori,KiisthesensordiscriminationpowerandΣiistherelativespreadfactorforsensori.Valuesofothervariablesarenotknown.CostSensitivitytoGlobalParametersValuesusedintheexperiment:CA=.25;P(YA=1|X=1)=.9856;P(YA=1|X=0)=.0144;CB=1;P(YB=1|X=1)=.7779;P(YB=1|X=0)=.2221;CC=10;P(YC=1|X=1)=.9265;P(YC=1|X=0)=.0735;CD=30;P(YC=1|X=1)=.9893;P(YC=1|X=0)=.0107; whereCiistheindividualcostofutilizationofsensori.Theprobabilitieshavebeencomputedforathresholdcorrespondingtotheequalerrorrate.CFalseNegativetobevariedbetween25millionand500billiondollarsLowandhighestimatesofdirectandindirectcostsincurredduetoafalsenegative.

CFalsePositive

tobevariedbetween180and720dollarsCostincurredduetofalsepositive(4men*(3-6hrs)*(15–30$/hr)P(X=1)tobevariedbetween3/109and1/100,000StructureoftreeswhichcamefirstRankwith3sensors(A,CandD)Treenumber49BooleanExpr:01010111Treenumber37BooleanExpr:00011111acbc10101ab1c001abc0111Treenumber55BooleanExpr:01111111Frequencyofoptimaltreeswith3sensors(A,CandD)whenoneparameterwasvariedConstantParameter(s)VariableParameter(s)TreeNumbersFrequency(outof10,000)EquivalentBooleanExpressionP(X=1)=1.281x10-6,CFalsePositive=492.61CFalseNegative375680001111155943201111111P(X=1)=0.8373x10-5,CFalseNegative=4.2681x1011CFalsePositive55994601111111CFalseNegative=4.4747x1011,CFalsePositive=351.9526P(X=1)37540001111155994601111111RandomlyselectedfixedparametervaluesVariationofCTotvs.CFalseNegative

P(X=1)andCFalsePositive

werekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofCFalseNegative

inthespecifiedrange.RandomlyselectedfixedparametervaluesP(X=1)andCFalseNegativewerekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofCFalsePositiveinthespecifiedrange.RandomlyselectedfixedparametervaluesVariationofCTotvs.CFalsePositiveCFalsePositiveandCFalseNegativewerekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofP(X=1)inthespecifiedrange.RandomlyselectedfixedparametervaluesVariationofCTotvs.P(X=1)Frequencyofoptimaltreeswith3sensors(A,CandD)whenoneparameterwasvariedFixedparametervaluesselectedatStroudandSaegervaluesConstantParameter(s)VariableParameter(s)TreeNumbersFrequency(outof10,000)EquivalentBooleanExpressionP(X=1)=3x10-8,CFalsePositive=600CFalseNegative371000000011111P(X=1)=3x10-8,CFalseNegative=5x1010CFalsePositive371000000011111CFalseNegative=5x1010,CFalsePositive=600P(X=1)4910801010111376940001111155919801111111VariationofCTotvs.CFalseNegative

P(X=1)andCFalsePositive

werekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofCFalseNegative

inthespecifiedrange.FixedparametervaluesselectedatStroudandSaegervaluesP(X=1)andCFalseNegativewerekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofCFalsePositiveinthespecifiedrange.FixedparametervaluesselectedatStroudandSaegervaluesVariationofCTotvs.CFalsePositiveCFalsePositiveandCFalseNegativewerekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofP(X=1)inthespecifiedrange.FixedparametervaluesselectedatStroudandSaegervaluesVariationofCTotvs.P(X=1)VariationofCTotwrtCFalseNegativeandCFalsePositive

CTot=

CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)

+CfixedRandomlyselectedfixedparametervaluesVariationofCTotwrtCFalseNegativeandP(X=1)CTot=

CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)

+CfixedRandomlyselectedfixedparametervaluesVariationofCTotwrtCFalsePositiveandP(X=1)CTot=

CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)

+CfixedRandomlyselectedfixedparametervaluesVariationofCTotwrtCFalseNegativeandCFalsePositive

CTot=

CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)

+CfixedFixedparametervaluesselectedatStroudandSaegervaluesVariationofCTotwrtCFalseNegativeandP(X=1)CTot=

CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)

+CfixedFixedparametervaluesselectedatStroudandSaegervaluesVariationofCTotwrtCFalsePositiveandP(X=1)CTot=

CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)

+CfixedFixedparametervaluesselectedatStroudandSaegervaluesTreeStructureandcorrespondingBooleanExpressionsTreenumber11785BooleanExpr:Treenumber11605BooleanExpr:a1cd011b1a1bc1d01d01TreeStructureandcorrespondingBooleanExpressionsTreenumber9133BooleanExpr:Treenumber8965BooleanExpr:d01acd011b0d01acd01b01cd01b1TreeStructureandcorrespondingBooleanExpressionsTreenumber6797BooleanExpr:Treenumber2473BooleanExpr:0000000101111111acd0101cd01b10abc0d1cd01b101TreeStructureandcorrespondingBooleanExpressionsTreenumber11305BooleanExpr:ad101cd01b1VariationofCTotvs.CFalseNegative

P(X=1)andCFalsePositive

werekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofCFalseNegative

inthespecifiedrange.RandomlyselectedfixedparametervaluesP(X=1)andCFalseNegativewerekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofCFalsePositiveinthespecifiedrange.RandomlyselectedfixedparametervaluesVariationofCTotvs.CFalsePositiveCFalsePositiveandCFalseNegativewerekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofP(X=1)inthespecifiedrange.RandomlyselectedfixedparametervaluesVariationofCTotvs.P(X=1)VariationofCTotvs.CFalseNegative

P(X=1)andCFalsePositive

werekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofCFalseNegative

inthespecifiedrange.FixedparametervaluesselectedatStroudandSaegervaluesP(X=1)andCFalseNegativewerekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofCFalsePositiveinthespecifiedrange.FixedparametervaluesselectedatStroudandSaegervaluesVariationofCTotvs.CFalsePositiveCFalsePositiveandCFalseNegativewerekeptconstantatthespecifiedvalueandCTotwascomputedfor10,000randomlyselectedvaluesofP(X=1)inthespecifiedrange.FixedparametervaluesselectedatStroudandSaegervaluesVariationofCTotvs.P(X=1)Frequencyofoptimaltreeswith4sensorswhentwoparameterswerevaried.Thefixedparameterswererandomlyselected.

RandomlyselectedfixedparametervaluesConstantParameter(s)VariableParameter(s)TreeNumbersFrequency(outof10,000)EquivalentBooleanExpressionCFalsePositive=453.6849CFalseNegativeP(X=1)50510000000001111111679718000100010111111189655000010101011111119001700010101011111119017600010101011111119133235000101011111111111605862101010111111111111178510620111111111111111CFalseNegative=4.7485x1010P(X=1),CFalsePositive261710000000111111111679716000100010111111189651210001010101111111900170001010101111111901713000101010111111191333920001010111111111113059901010101011111111160593510101011111111111P(X=1)=0.6344x10-5CFalseNegative,CFalsePositive679720001000101111111896513000101010111111191336500010101111111111130513010101010111111111605792801010111111111111178519790111111111111111VariationofCTotwrtCFalseNegativeandCFalsePositive

CTot=

CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)

+CfixedRandomlyselectedfixedparametervaluesVariationofCTotwrtCFalseNegativeandP(X=1)CTot=

CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)

+CfixedRandomlyselectedfixedparametervaluesVariationofCTotwrtCFalsePositiveandP(X=1)CTot=

CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)

+CfixedRandomlyselectedfixedparametervaluesFrequencyofoptimaltreeswith4sensorswhentwoparameterswerevaried.ThefixedparameterswereselectedattheStroudandSaegervalues.ConstantParameter(s)VariableParameter(s)TreeNumbersFrequency(outof10,000)EquivalentBooleanExpressionCFalsePositive=600CFalseNegativeP(X=1)50510000000001111111247320000000101111111250910000000101111111679718000100010111111189651380001010101111111900119000101010111111190177000101010111111191331840001010111111111113056501010101011111111160592320101011111111111117853330111111111111111CFalseNegative=5x1010P(X=1),CFalsePositive67971400010001011111118965117000101010111111190019000101010111111190179000101010111111191333740001010111111111113059601010101011111111160593810101011111111111P(X=1)=3x10-8,CFalseNegative,CFalsePositive505110000000001111111775500000001000011112473420000000101111111261740000000011111111167975580001000101111111896538330001010101111111913354060001010111111111116051050101011111111111VariationofCTotwrtCFalseNegativeandCFalsePositive

CTot=

CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)

+CfixedFixedparametervaluesselectedatStroudandSaegervaluesVariationofCTotwrtCFalseNegativeandP(X=1)CTot=

CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)

+CfixedFixedparametervaluesselectedatStroudandSaegervaluesVariationofCTotwrtCFalsePositiveandP(X=1)CTot=

CFalsePositive*P(X=0)*P(Y=1|X=0)+CFalseNegative*P(X=1)*P(Y=0|X=1)

+CfixedFixedparametervaluesselectedatStroudandSaegervaluesSensitivitytoSensorPerformanceCA=.25;KA=4.37;ΣA=1CB=.25;KB=1.53;ΣB=1CC=15;KC=2.9;ΣC=1CD=30;KD=4.6;ΣD=1Theprobabilityoffalsepositivefortheithsensoriscomputedas:P(Yi=1|X=0)=0.5erfc[Ti/√2]Theprobabilityofdetectionfortheithsensoriscomputedas:P(Yi=1|X=1)=0.5erfc[(Ti-Ki)/(Σ√2)]whereCiistheindividualcostofutilizationofsensori,KiisthediscriminationpowerofthesensorandΣiisthespreadfactorforthesensorFollowingexperimentshavebeendoneusingsensorsA,B,CandDasdescribedbelowbyvaryingtheindividualsensorthresholdsTA,TBandTCfrom-4.0to+4.0instepsof0.4.ThesevalueswerechosensincetheygaveusaROCcurvefortheindividualsensorsoveracompleterangeP(Yi=1|X=0)andP(Yi=1|X=1)Frequencyofoptimaltreeswith3sensorswhentheThresholdswerevaried.Thefixedparameters(CFalsePositive,CFalseNegative,P(X=1))wereselectedrandomly.Fifteentreesattainedrankone,outofwhichtreenumber37wasthemostfrequent.ConstantsTreeNumbersFrequencyBooleanExpressionCFalseNegative==5.0125x109P(X=1)=5.05x10-6andCFalsePositive=450271140001011129146000101112183000000014926401010111513220101011125957000101112314750001010115243700010011384572000111111952560001010115828000000014558730011011155105870111111171339200000111371751500011111Performance(ROC)ofBestDecisionTreeforTreenumber37Performance(ROC)ofBestDecisionTreeforTreenumber37Frequencyofoptimaltreeswith4sensorswhentheThresholdswerevaried.Thefixedparameters(CFalsePositive,CFalseNegative,P(X=1))wereselectedrandomly.244treesattainedrankone,outofwhichtreenumber445wasthemostfrequent.Only15mostfrequentlyoccurringoptimaltreesoutofthe241aretabulatedbelow.ConstantsTreeNumbersFrequencyBooleanExpressionCFalseNegative==4.8668x1011P(X=1)=7.5361x10-6andCFalsePositive=499.754451

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論